59 research outputs found

    Superantigen recognition and interactions: functions, mechanisms and applications

    Get PDF
    Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology

    Worming the Circular Economy for Biowaste and Plastics: Hermetia illucens, Tenebrio molitor, and Zophobas morio

    Get PDF
    The negative impact of the modern-day lifestyle on the environment was aggravated during the COVID-19 pandemic through the increased use of single-use plastics from food take-aways to medical supplies. Similarly, the closure of food outlets and disrupted supply chains have also resulted in significant food wastage. As the pandemic rages on, the aggravation of increased waste becomes an increasingly urgent problem that threatens the biodiversity, ecosystems, and human health worldwide through pollution. While there are existing methods to deal with organic and plastic waste, many of the solutions cause additional problems. Increasingly proposed as a natural solution to man-made problems, there are insect solutions for dealing with the artificial and organic waste products and moving towards a circular economy, making the use of natural insect solutions commercially sustainable. This review discusses the findings on how some of these insects, particularly Hermetia illucens, Tenebrio molitor, and Zophobas morio, can play an increasingly important role in food and plastics, with a focus on the latter

    Understanding the T cell immune response in SARS coronavirus infection

    Get PDF
    10.1038/emi.2012.26Emerging Microbes and Infections1Article number e23, 6 page

    More Than Meets the Kappa for Antibody Superantigen Protein L (PpL)

    Get PDF
    Immunoglobulin superantigens play an important role in affinity purification of antibodies and the microbiota-immune axis at mucosal areas. Based on current understanding, Staphylococcal Protein A (SpA), Streptococcal Protein G (SpG) and Finegoldia Protein L (PpL) are thought to only bind specific regions of human antibodies, allowing for selective purification of antibody isotypes and chains. Clinically, these superantigens are often classified as toxins and increase the virulence of the producing pathogen through unspecific interactions with immune proteins. To perform an in-depth interaction study of these three superantigens with antibodies, bio-layer interferometry (BLI) measurements of their interactions with a permutation panel of 63 IgG1 variants of Pertuzumab and Trastuzumab CDRs grafted to the six human Vκ and seven human VH region families were tested. Through this holistic and systemic analysis of IgG1 variants with various antibody regions modified, comparisons revealed novel PpL–antibody interactions influenced by other non-canonical antibody known light-chain framework regions, whereas SpA and SpG showed relatively consistent interactions. These findings have implications on PpL-based affinity antibody purification and design that can guide the engineering and understanding of PpL-based microbiota-immune effects

    Augmenting recombinant antibody production in HEK293E cells: Optimizing transfection and culture parameters

    Get PDF
    Background: Optimizing recombinant antibody production is important for cost-effective therapeutics and diagnostics. With impact on commercialization, higher productivity beyond laboratory scales is highly sought, where efficient production can also accelerate antibody characterizations and investigations. Methods: Investigating HEK293E cells for mammalian antibody production, various transfection and culture parameters were systematically analyzed for antibody light chain production before evaluating them for whole antibody production. Transfection parameters investigated include seeding cell density, the concentration of the transfection reagent and DNA, complexation time, temperature, and volume, as well as culture parameters such as medium replacement, serum deprivation, use of cell maintenance antibiotic, incubation temperature, medium volume, post-transfection harvest day, and common nutrient supplements. Results: Using 2 mL adherent HEK293E cell culture transfections with 25 kDa linear polyethylenimine in the most optimized parameters, we demonstrated a ~2-fold production increase for light chain alone and for whole antibody production reaching 536 and 49 μg, respectively, in a cost-effective manner. With the addition of peptone, κ light chain increased by ~4-fold to 1032 μg, whereas whole antibody increased to a lesser extent by ~2.5-fold to 51 μg, with benefits potentially for antibodies limited by their light chains in production. Conclusions: Our optimized findings show promise for a more efficient and convenient antibody production method through transfection and culture optimizations that can be incorporated to scale-up processes and with potential transferability to other mammalian-based recombinant protein production using HEK293E

    Molecular insights of nickel binding to therapeutic antibodies as a possible new antibody superantigen

    Get PDF
    The binding of nickel by immune proteins can manifest as Type IV contact dermatitis (Ni-specific T cells mediated) and less frequently as Type I hypersensitivity with both mechanisms remaining unknown to date. Since there are reports of patients co-manifesting the two hypersensitivities, a common mechanism may underlie both the TCR and IgE nickel binding. Focusing on Trastuzumab and Pertuzumab IgE variants as serendipitous investigation models, we found Ni-NTA interactions independent of Her2 binding to be due to glutamine stretches. These stretches are both Ni-inducible and in fixed pockets at the antibody complementarity-determining regions (CDRs) and framework regions (FWRs) of both the antibody heavy and light chains with influence from the heavy chain constant region. Comparisons with TCRs structures revealed similar interactions, demonstrating the possible underlying mechanism in selecting for Ni-binding IgEs and TCRs respectively. With the elucidation of the interaction, future therapeutic antibodies could also be sagaciously engineered to utilize such nickel binding for biotechnological purposes

    Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L

    Get PDF
    Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes
    corecore