14,097 research outputs found

    Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. © 2014 IEEE

    A hybrid approach to fuzzy risk analysis in stock market

    Full text link
    The analysis and prediction of stock market has always been well recognized as a difficult problem due to the level of uncertainty and the factors that affect the price. To tackle this challenge problem, this paper proposed a hybrid approach which mines the useful information utilizing grey system and fuzzy risk analysis in stock prices prediction. In this approach, we firstly provide a model which contains the fuzzy function, k-mean algorithm and grey system (shorted for FKG), then provide the model of fuzzy risk analysis (FRA). A practical example to describe the development of FKG and FRA in stock market is given, and the analytical results provide an evaluation of the method which shows promote results. © 2013 IEEE

    MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers

    Full text link
    The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C.Comment: 12 pages, 4 figure

    Bulge formation from SSCs in a responding cuspy dark matter halo

    Get PDF
    We simulate the bulge formation in very late-type dwarf galaxies from circumnuclear super star clusters (SSCs) moving in a responding cuspy dark matter halo (DMH). The simulations show that (1) the response of DMH to sinking of SSCs is detectable only in the region interior to about 200 pc. The mean logarithmic slope of the responding DM density profile over that area displays two different phases: the very early descent followed by ascent till approaching to 1.2 at the age of 2 Gyrs. (2) the detectable feedbacks of the DMH response on the bulge formation turned out to be very small, in the sense that the formed bulges and their paired nuclear cusps in the fixed and the responding DMH are basically the same, both are consistent with HSTHST observations. (3) the yielded mass correlation of bulges to their nuclear (stellar) cusps and the time evolution of cusps' mass are accordance with recent findings on relevant relations. In combination with the consistent effective radii of nuclear cusps with observed quantities of nuclear clusters, we believe that the bulge formation scenario that we proposed could be a very promising mechanism to form nuclear clusters.Comment: 27 pages, 11 figures, accepted for publication in Ap

    A knowledge model-based BIM framework for automatic code-compliant quantity take-off

    Get PDF
    The results of quantity take-off (QTO) based on building information modeling (BIM) technology rely heavily on the geometry and semantics of 3D objects that may vary among BIM model creation methods. Furthermore, conventional BIM models do not contain all the required information for automatic QTO and the results do not follow the descriptive rules in the standard method of measurement (SMM). This paper presents a new knowledge model-based framework that incorporates the semantic information and SMM rules in BIM for automatic code-compliant QTO. It begins with domain knowledge modeling, taking into consideration QTO-related information, semantic QTO entities and relationships, and SMM logic formulation. Subsequently, linguistic-based approaches are developed to automatically audit the BIM model integrity for QTO purposes, with QTO algorithms developed and used in a case study for demonstration. The results indicate that the proposed new framework automatically identifies the semantic errors in BIM models and obtains code-compliant quantities

    Canola yield formation under different population and water use levels

    Get PDF
    Non-Peer ReviewedOptimum population is the foundation for high yields under rain-fed agriculture and the optimum population depends on the water availability. However, establishing a good canola stand in the Canadian semiarid Prairie, where low temperature, water stress and soil crusting result in poor seed bed conditions, is difficult. A field study was conducted during 2000, a year with moderate soil moisture and good canola growing conditions, and 2001, a year with severe water and heat stress, to understand the plasticity of canola yield parameters at different (80 to 5 plants per square meter) plant populations. The primary response of canola to lower plant population was increased branching, although it did not compensate completely for the decreasing population. Increased branching was accompanied by increased production and increased distribution of pods on the primary and secondary branches. Canola exhibited plasticity in yield adjustment over a wide range of plant populations. Environmental conditions played a significant role in expressing canola plasticity. For example, in a normal year like 2000 canola maintained similar yield levels over a wider range of populations (80 to 20 pl m-2), while in a dry year like 2001 seed yield started declining with populations below 40 pl m-2. Ability to produce more pods, especially at lower population densities, was responsible for the environmental influence on yield formation

    Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Get PDF
    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction
    corecore