7,128 research outputs found

    Specific heat and validity of quasiparticle approximation in the half-filled Landau level

    Full text link
    We calculate the specific heat of composite fermion system in the half-filled Landau level. Two different methods are used to examine validity of the quasiparticle approximation when the two-body interaction is given by V(q)=V0/q2ηV(q) = V_0 / q^{2-\eta} (1η21 \le \eta \le 2). The singular part of the specific heat is calculated from the free energy of the gauge field, which is compared with the specific heat calculated from the quasiparticle approximation via the singular self-energy correction due to the gauge field fluctuations. It turns out that two results are in general different and they coincide only for the case of the Coulomb interaction (η=1\eta = 1). This result supports the fact that the quasiparticle approximation is valid only for the case of the Coulomb interaction. It is emphasized that this result is obtained by looking at a gauge-invariant quantity -- the specific heat.Comment: 8 pages, Revte

    Influence of gauge-field fluctuations on composite fermions near the half-filled state

    Full text link
    Taking into account the transverse gauge field fluctuations, which interact with composite fermions, we examine the finite temperature compressibility of the fermions as a function of an effective magnetic field ΔB=B2nehc/e\Delta B = B - 2 n_e hc/e (nen_e is the density of electrons) near the half-filled state. It is shown that, after including the lowest order gauge field correction, the compressibility goes as nμeΔωc/2T(1+A(η)η1(Δωc)21+ηT){\partial n \over \partial \mu} \propto e^{- \Delta \omega_c / 2 T} \left ( 1 + {A (\eta) \over \eta - 1} {(\Delta \omega_c)^{2 \over 1 + \eta} \over T} \right ) for TΔωcT \ll \Delta \omega_c, where Δωc=eΔBmc\Delta \omega_c = {e \Delta B \over mc}. Here we assume that the interaction between the fermions is given by v(q)=V0/q2η (1η2)v ({\bf q}) = V_0 / q^{2 - \eta} \ (1 \le \eta \le 2), where A(η)A (\eta) is a η\eta dependent constant. This result can be interpreted as a divergent correction to the activation energy gap and is consistent with the divergent renormalization of the effective mass of the composite fermions.Comment: Plain Tex, 24 pages, 5 figures available upon reques

    Quasi-particle behavior of composite fermions in the half-filled Landau level

    Full text link
    We calculate the effect of infrared fluctuations of the Chern-Simons gauge field on the single-particle Green's function of composite fermions in the half-filled Landau level via higher-dimensional bosonization on a curved Fermi surface. We find that composite fermions remain well-defined quasi-particles, with an effective mass given by the mean-field value, but with anomalously large damping and a spectral function that contains considerable weight away from the quasi-particle peak.Comment: reference added; accepted for publication in Phys. Rev. Let

    Quantum Boltzmann equation of composite fermions interacting with a gauge field

    Full text link
    We derive the quantum Boltzmann equation (QBE) of composite fermions at/near the ν=1/2\nu = 1/2 state using the non-equilibrium Green's function technique. The lowest order perturbative correction to the self-energy due to the strong gauge field fluctuations suggests that there is no well defined Landau-quasi-particle. Therefore, we cannot assume the existence of the Landau-quasi-particles {\it a priori} in the derivation of the QBE. Using an alternative formulation, we derive the QBE for the generalized Fermi surface displacement which corresponds to the local variation of the chemical potential in momentum space. {}From this QBE, one can understand in a unified fashion the Fermi-liquid behaviors of the density-density and the current-current correlation functions at ν=1/2\nu = 1/2 (in the long wave length and the low frequency limits) and the singular behavior of the energy gap obtained from the finite temperature activation behavior of the compressibility near ν=1/2\nu = 1/2. Implications of these results to the recent experiments are also discussed.Comment: 44 pages, Plain Tex, 5 figures (ps files) available upon reques

    Effective Mass of Composite Fermions and Fermionic Chern-Simons Theory in Temporal Gauge

    Full text link
    The definitions of the effective mass of the composite fermion are discussed for the half-filled Landau level problem. In a recent work, Shankar and Murthy show a finite effective mass of the composite fermion by a canonical transformation while the perturbative calculation gives the logarithmic divergence of the effective mass at the Fermi surface. We will emphasize that the different definition of the effective mass has the different physical processes. The finite one could be defined for any momentum of the composite fermion while the divergence only appears at the Fermi surface. We work with the standard Halperin-Lee-Read model but in the temporal gauge. The advantage of this gauge to be employed is that the finite effective mass could be calculated in the Hartree-Fock approximation. Furthermore, it is precisely equal to the result that Shankar and Murthy obtained which is well-fit with the numerical calculation from the ground state energy analysis and a semi-classical estimation. However, if we consider the random phase approximation, one sees that the divergence of the effective mass of the quasiparticle at the Fermi surface emerges again no matter that we work on the temporal or Coulomb gauges. We develop an effective theory where the finite effective mass serves as a `bare' effective mass and show that the same divergence of the RPA effective mass. On the other hand, the correct behavior of the response functions in the small band mass limit could be seen clearly in the temporal gauge since there is a self-interaction among the magnetoplasmons.Comment: 27 pages,6 eps figure

    Gauge (non-)invariant Green functions of Dirac fermions coupled to gauge fields

    Full text link
    We develop a unified approach to both infrared and ultraviolet asymptotics of the fermion Green functions in the condensed matter systems that allow for an effective description in the framework of the Quantum Electrodynamics. By applying a path integral representation to the previously suggested form of the physical electron propagator we demonstrate that in the massless case this gauge invariant function features a "stronger-than-a-pole" branch-cut singularity instead of the conjectured Luttinger-like behavior. The obtained results alert one to the possibility that construction of physically relevant amplitudes in the effective gauge theories might prove more complex than previously thought

    Gauge-invariant response functions of fermions coupled to a gauge field

    Full text link
    We study a model of fermions interacting with a gauge field and calculate gauge-invariant two-particle Green's functions or response functions. The leading singular contributions from the self-energy correction are found to be cancelled by those from the vertex correction for small qq and Ω\Omega. As a result, the remaining contributions are not singular enough to change the leading order results of the random phase approximation. It is also shown that the gauge field propagator is not renormalized up to two-loop order. We examine the resulting gauge-invariant two-particle Green's functions for small qq and Ω\Omega, but for all ratios of Ω/vFq\Omega / v_F q and we conclude that they can be described by Fermi liquid forms without a diverging effective mass.Comment: Plain Tex, 35 pages, 5 figures available upon request, Revised Version (Expanded discussion), To be published in Physical Review B 50, (1994) (December 15 issue

    Low energy properties of M-state tunneling systems in metals: New candidates for non-Fermi-liquid systems

    Full text link
    We construct a generalized multiplicative renormalization group transformation to study the low energy dynamics of a heavy particle tunneling among MM different positions and interacting with NfN_f independent conduction electron channels. Using a 1/Nf1/N_f-expansion we show that this M-level scales towards a fixed point equivalent to the NfN_f channel SU(M)×SU(Nf)SU(M) \times SU(N_f) Coqblin-Schrieffer model. Solving numerically the scaling equations we find that a realistic M-level system scales close to this fixed point (FP) and its Kondo temperature is in the experimentally observable range 110K1-10 K.Comment: 11 Latex pages, to appear in Phys. Rev. Lett, Figures available from the author by reques

    Theory of Fermion Liquids

    Full text link
    We develop a general theory of fermion liquids in spatial dimensions greater than one. The principal method, bosonization, is applied to the cases of short and long range longitudinal interactions, and to transverse gauge interactions. All the correlation functions of the system may be obtained with the use of a generating functional. Short-range and Coulomb interactions do not destroy the Landau Fermi fixed point. Novel fixed points are found, however, in the cases of a super-long range longitudinal interaction in two dimensions and transverse gauge interactions in two and three spatial dimensions. We consider in some detail the 2+1-dimensional problem of a Chern-Simons gauge action combined with a longitudinal two-body interaction V(q)qy1V({\bf q}) \propto |{\bf q}|^{y-1} which controls the density, and hence gauge, fluctuations. For y<0y < 0 we find that the gauge interaction is irrelevant and the Landau fixed point is stable, while for y>0y > 0 the interaction is relevant and the fixed point cannot be accessed by bosonization. Of special importance is the case y=0y = 0 (Coulomb interaction) which describes the Halperin-Lee-Read theory of the half-filled Landau level. We obtain the full quasiparticle propagator which is of a marginal Fermi liquid form. Using Ward Identities, we show that neither the inclusion of nonlinear terms in the fermion dispersion, nor vertex corrections, alters our results: the fixed point is accessible by bosonization. As the two-point fermion Green's function is not gauge invariant, we also investigate the gauge-invariant density response function. Near momentum Q=2kFQ = 2 k_F, in addition to the Kohn anomaly we find singular behavior. In Appendices we present a numerical calculation of the spectral function for a Fermi liquid with Landau parameter f00f_0 \neq 0. We also show how Kohn's theorem isComment: Minor corrections and clarifications, and additional references. 30 pages, RevTex 3.0, 3 figures in uuencoded postscript files

    The Screening Cloud in the k-Channel Kondo Model: Perturbative and Large-k Results

    Full text link
    We demonstrate the existence of a large Kondo screening cloud in the k-channel Kondo model using both renormalization group improved perturbation theory and the large-k limit. We study position (r) dependent spin Green's functions in both static and equal time cases. The equal-time Green's function provides a natural definition of the screening cloud profile, in which the large Kondo scale appears. At large distances it consists of both a slowly varying piece and a piece which oscillates at twice the Fermi wave-vector. This function is calculated at all r in the large-k limit. Static Green's functions (Knight shift or susceptibility) consist only of a term oscillating at 2kF, and appear to factorize into a function of r times a function of T for rT << vF, in agreement with NMR experiments. Most of the integrated susceptibility comes from the impurity-impurity part with conduction electron contributions suppressed by powers of the bare Kondo coupling. The single-channel and overscreened multi-channel cases are rather similar although anomalous power-laws occur in the latter case at large r and low T due to irrelevant operator corrections.Comment: 22 Revtex pages, 12 figure
    corecore