19,984 research outputs found
Arithmeticity for periods of automorphic forms
A cuspidal automorphic representation \pi of a group G is said to to be
distinguished with respect to a subgroup H if the integral of f along H is
nonzero for a cusp form f in the space of \pi. Such period integrals are
related to (non)vanishing of interesting L-values and also to Langlands
functoriality. This article discusses a general principle, labelled
arithmeticity, which roughly states that "\pi is H-distinguished if and only if
any Galois conjugate of \pi is H-distinguished." We study this principle via
several examples; starting with GL(2) and leading up to more complicated
situations where the ambient group is a higher GL(n) or a classical group.Comment: 32 pages. The final version is to appear in the proceedings of the
International Colloquium on Automorphic Representations and L-functions, held
in TIFR, Mumbai, January 201
Stein factors for negative binomial approximation in Wasserstein distance
The paper gives the bounds on the solutions to a Stein equation for the
negative binomial distribution that are needed for approximation in terms of
the Wasserstein metric. The proofs are probabilistic, and follow the approach
introduced in Barbour and Xia (Bernoulli 12 (2006) 943-954). The bounds are
used to quantify the accuracy of negative binomial approximation to parasite
counts in hosts. Since the infectivity of a population can be expected to be
proportional to its total parasite burden, the Wasserstein metric is the
appropriate choice.Comment: Published at http://dx.doi.org/10.3150/14-BEJ595 in the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Type Classes for Lightweight Substructural Types
Linear and substructural types are powerful tools, but adding them to
standard functional programming languages often means introducing extra
annotations and typing machinery. We propose a lightweight substructural type
system design that recasts the structural rules of weakening and contraction as
type classes; we demonstrate this design in a prototype language, Clamp.
Clamp supports polymorphic substructural types as well as an expressive
system of mutable references. At the same time, it adds little additional
overhead to a standard Damas-Hindley-Milner type system enriched with type
classes. We have established type safety for the core model and implemented a
type checker with type inference in Haskell.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441
HLA-CSPIF panel on commercial off-the-shelf distributed simulation
Commercial-off-the-shelf (COTS) simulation packages are widely used in many areas of industry. Several research groups are attempting to integrate distributed simulation principles and techniques with these packages to potentially give us COTS distributed simulation. The High Level Architecture-COTS Simulation Package Interoperation Forum (HLA-CSPIF) is a group of researchers and practitioners that are studying methodological and technological issues in this area. This panel paper presents the views of four members of this forum on the technical problems that must be overcome for this emerging field to be realized
Recommended from our members
Finite element modelling of atomic force microscope cantilever beams with uncertainty in material and dimensional parameters
Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, PolandThe stiffness and the natural frequencies of a rectangular and a V-shaped micro-cantilever beams used in Atomic Force Microscope (AFM) were analysed using the Finite Element (FE) method. A determinate analysis in the material and dimensional parameters was first carried out to compare with published analytical and experimental results. Uncertainties in the beams’ parameters such as the material properties and dimensions due to the fabrication process were then modelled using a statistic FE analysis. It is found that for the rectangular micro-beam, a ±5% change in the value of the parameters could result in 3 to 8-folds (up to more than 45%) errors in the stiffness or the 1st natural frequency of the cantilever. Such big uncertainties need to be considered in the design and calibration of AFM to ensure the measurement accuracy at the micron and nano scales. In addition, a sensitivity analysis was carried out for the influence of the studied parameters. The finding provides useful guidelines on the design of micro-cantilevers used in the AFM technology.The research was supported by Sichuan International Research Collaboration Project (2014HH0022)
Experimental investigation of the properties of electrospun nanofibers for potential medical application
Copyright © 2015 Anhui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Polymer based nanofibers using ethylene-co-vinyl alcohol (EVOH) were fabricated by electrospinning technology. The nanofibers were studied for potential use as dressing materials for skin wounds treatment. Properties closely related to the clinical requirements for wound dressing were investigated, including the fluid uptake ability (FUA), the water vapour transmission rate (WVTR), the bacteria control ability of nanofibers encapsulated with different antibacterial drugs, and Ag of various concentrations. Nanofibre degradation under different environmental conditions was also studied for the prospect of long term usage. The finding confirms the potential of EVOH nanofibers for wound dressing application, including the superior performance compared to cotton gauze and the strong germ killing capacity when Ag particles are present in the nanofibers
- …