139 research outputs found
Assessing vegetation function with imaging spectroscopy
Healthy vegetation function supports diverse biological communities and ecosystem processes, and provides crops, forest products, forage, and countless other benefits. Vegetation function can be assessed by examining dynamic processes and by evaluating plant traits, which themselves are dynamic. Using both trait-based and process-based approaches, spectroscopy can assess vegetation function at multiple scales using a variety of sensors and platforms ranging from proximal to airborne and satellite measurements. Since spectroscopic data are defined by the instruments and platforms available, along with their corresponding spatial, temporal and spectral scales, and since these scales may not always match those of the function of interest, consideration of scale is a necessary focus. For a full understanding of vegetation processes, combined (multi-scale) sampling methods using empirical and theoretical approaches are required, along with improved informatics
Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat
© 2015, Springer Science+Business Media New York. Nitrogen (N) fertilization is crucial for the growth and development of wheat crops, and yet increased use of N can also result in increased stripe rust severity. Stripe rust infection and N deficiency both cause changes in foliar physiological activity and reduction in plant pigments that result in chlorosis. Furthermore, stripe rust produce pustules on the leaf surface which similar to chlorotic regions have a yellow color. Quantifying the severity of each factor is critical for adopting appropriate management practices. Eleven widely-used vegetation indices, based on mathematic combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate and quantify stripe rust severity and N deficiency in a rust-susceptible wheat variety (H45) under varying conditions of nitrogen status. The physiological reflectance index (PhRI) and leaf and canopy chlorophyll index (LCCI) provided the strongest correlation with levels of rust infection and N-deficiency, respectively. When PhRI and LCCI were used in a sequence, both N deficiency and rust infection levels were correctly classified in 82.5 and 55 % of the plots at Zadoks growth stage 47 and 75, respectively. In misclassified plots, an overestimation of N deficiency was accompanied by an underestimation of the rust infection level or vice versa. In 18 % of the plots, there was a tendency to underestimate the severity of stripe rust infection even though the N-deficiency level was correctly predicted. The contrasting responses of the PhRI and LCCI to stripe rust infection and N deficiency, respectively, and the relative insensitivity of these indices to the other parameter makes their use in combination suitable for quantifying levels of stripe rust infection and N deficiency in wheat crops under field conditions
Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a
Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling
[Purpose of Review] We provide a comprehensive review of the empirical and modelling approaches used to quantify the radiation–vegetation interactions related to vegetation temperature, leaf optical properties linked to pigment absorption and chlorophyll fluorescence emission, and of their capability to monitor vegetation health. Part 1 provides an overview of the main physiological indicators (PIs) applied in remote sensing to detect alterations in plant functioning linked to vegetation diseases and decline processes. Part 2 reviews the recent advances in the development of quantitative methods to assess PI through hyperspectral and thermal images.[Recent Findings] In recent years, the availability of high-resolution hyperspectral and thermal images has increased due to the extraordinary progress made in sensor technology, including the miniaturization of advanced cameras designed for unmanned aerial vehicle (UAV) systems and lightweight aircrafts. This technological revolution has contributed to the wider use of hyperspectral imaging sensors by the scientific community and industry; it has led to better modelling and understanding of the sensitivity of different ranges of the electromagnetic spectrum to detect biophysical alterations used as early warning indicators of vegetation health.[Summary] The review deals with the capability of PIs such as vegetation temperature, chlorophyll fluorescence, photosynthetic energy downregulation and photosynthetic pigments detected through remote sensing to monitor the early responses of plants to different stressors. Various methods for the detection of PI alterations have recently been proposed and validated to monitor vegetation health. The greatest challenges for the remote sensing community today are (i) the availability of high spatial, spectral and temporal resolution image data; (ii) the empirical validation of radiation–vegetation interactions; (iii) the upscaling of physiological alterations from the leaf to the canopy, mainly in complex heterogeneous vegetation landscapes; and (iv) the temporal dynamics of the PIs and the interaction between physiological changes.The authors received funding provided by the FluorFLIGHT (GGR801) Marie Curie Fellowship, the QUERCUSAT and ESPECTRAMED projects (Spanish Ministry of Economy and Competitiveness), the Academy of Finland (grants 266152, 317387) and the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.Peer reviewe
Satellite-based terrestrial production efficiency modeling
Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research
Remote detection of invasive alien species
The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail
- …