1,009 research outputs found
Fine structure and optical pumping of spins in individual semiconductor quantum dots
We review spin properties of semiconductor quantum dots and their effect on
optical spectra. Photoluminescence and other types of spectroscopy are used to
probe neutral and charged excitons in individual quantum dots with high
spectral and spatial resolution. Spectral fine structure and polarization
reveal how quantum dot spins interact with each other and with their
environment. By taking advantage of the selectivity of optical selection rules
and spin relaxation, optical spin pumping of the ground state electron and
nuclear spins is achieved. Through such mechanisms, light can be used to
process spins for use as a carrier of information
Non-local nuclear spin quieting in quantum dot molecules: Optically-induced extended two-electron spin coherence time
We demonstrate the extension of coherence between all four two-electron spin
ground states of an InAs quantum dot molecule (QDM) via non-local suppression
of nuclear spin fluctuations in both constituent quantum dots (QDs), while
optically addressing only the upper QD transitions. Long coherence times are
revealed through dark-state spectroscopy as resulting from nuclear spin locking
mediated by the exchange interaction between the QDs. Lineshape analysis
provides the first measurement of the quieting of the Overhauser field
distribution correlating with reduced nuclear spin fluctuations.Comment: Supplementary materials can be found on the publication page of our
website. http://research.physics.lsa.umich.edu/dst/Publications.htm
Giant nonlinearity and entanglement of single photons in photonic bandgap structures
Giantly enhanced cross-phase modulation with suppressed spectral broadening
is predicted between optically-induced dark-state polaritons whose propagation
is strongly affected by photonic bandgaps of spatially periodic media with
multilevel dopants. This mechanism is shown to be capable of fully entangling
two single-photon pulses with high fidelity.Comment: 7 pages, 1 figur
Internet cigarette vendors make tax-free claims and sell cigarettes cheaper than retail outlets: Table 1
This paper aims to (1) assess whether promotion of tax-free sales among Internet cigarette vendors (ICVs) changed between 2009 and 2011, (2) determine which types of ICVs are most likely to promote tax-free sales (e.g., US-based, international, or mixed location ICVs), and (3) compare the price of cigarettes advertised in ICVs to prices at brick-and-mortar retail outlets
Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots
We report on the coherent optical excitation of electron spin polarization in
the ground state of charged GaAs quantum dots via an intermediate charged
exciton (trion) state. Coherent optical fields are used for the creation and
detection of the Raman spin coherence between the spin ground states of the
charged quantum dot. The measured spin decoherence time, which is likely
limited by the nature of the spin ensemble, approaches 10 ns at zero field. We
also show that the Raman spin coherence in the quantum beats is caused not only
by the usual stimulated Raman interaction but also by simultaneous spontaneous
radiative decay of either excited trion state to a coherent combination of the
two spin states.Comment: 4 pages, 3 figures. Minor modification
Lactose and benign ovarian tumours in a case–control study
We investigated the relation between benign ovarian tumours and lactose among 746 case women identified at seven New York metropolitan hospitals and 404 community controls, age and hospital frequency matched to the expected case distribution. No increase in risk was found for lactose (highest quartile versus lowest: adjusted odds ratio = 0.82 (95% CI 0.57–1.20) or for any other lactose foods. © 2000 Cancer Research Campaign http://www.bjcancer.co
Temperature dependence of polarization relaxation in semiconductor quantum dots
The decay time of the linear polarization degree of the luminescence in
strongly confined semiconductor quantum dots with asymmetrical shape is
calculated in the frame of second-order quasielastic interaction between
quantum dot charge carriers and LO phonons. The phonon bottleneck does not
prevent significantly the relaxation processes and the calculated decay times
can be of the order of a few tens picoseconds at temperature K,
consistent with recent experiments by Paillard et al. [Phys. Rev. Lett.
{\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure
Characteristic molecular properties of one-electron double quantum rings under magnetic fields
The molecular states of conduction electrons in laterally coupled quantum
rings are investigated theoretically. The states are shown to have a distinct
magnetic field dependence, which gives rise to periodic fluctuations of the
tunnel splitting and ring angular momentum in the vicinity of the ground state
crossings. The origin of these effects can be traced back to the Aharonov-Bohm
oscillations of the energy levels, along with the quantum mechanical tunneling
between the rings. We propose a setup using double quantum rings which shows
that Aharonov-Bohm effects can be observed even if the net magnetic flux
trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat
- …