12 research outputs found

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure

    Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems

    Get PDF
    We show theoretically with the simplest possible model that the intensity of an upconversion luminescence that is excited by the sequential absorption of n photons has a dependence on absorbed pump power P, which may range from the limit of Pn down to the limit of P1 for the upper state and less than P1 for the intermediate states. The two limits are identified as the cases of infinitely small and infinitely large upconversion rates, respectively. In the latter case, the dependence of luminescence intensities from intermediate excited states on pump power changes with the underlying upconversion and decay mechanisms. In certain situations, energy transfer upconversion and excited-state absorption can be distinguished by the measured slopes. The competition between linear decay and upconversion in the individual excitation steps of sequential upconversion can be analyzed. The influence of nonuniform distributions of absorbed pump power or of a subset of ions participating in energy-transfer upconversion is investigated. These results are of importance for the interpretation of excitation mechanisms of luminescent and laser materials. We verify our theoretical results by experimental examples of multiphoton-excited luminescence in Cs3Lu2Cl9:Er3+, Ba2YCl7:Er3+, LiYF4:Nd3+, and Cs2ZrCl6:Re4+

    An extension of Melnikov's theorem

    No full text

    Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots

    No full text
    Colloidal Mn2+-doped CdSe quantum dots showing long excitonic photoluminescence decay times of up to τexc = 15 μs at temperatures over 100 K are described. These decay times exceed those of undoped CdSe quantum dots by ∼103 and are shown to arise from the creation of excitons by back energy transfer from excited Mn2+ dopant ions. A kinetic model describing thermal equilibrium between Mn2+ 4T1 and CdSe excitonic excited states reproduces the experimental observations and reveals that, for some quantum dots, excitons can emit with near unity probability despite being ∼100 meV above the Mn2+ 4T1 state. The effect of Mn2+ doping on CdSe quantum dot luminescence at high temperatures is thus completely opposite from that at low temperatures described previously

    Delayed exciton emission and its relation to blinking in CdSe quantum dots

    No full text
    The efficiency and stability of emission from semiconductor nanocrystal quantum dots (QDs) is negatively affected by "blinking" on the single-nanocrystal level, that is, random alternation of bright and dark periods. The time scales of these fluctuations can be as long as many seconds, orders of magnitude longer than typical lifetimes of exciton states in QDs. In this work, we investigate photoluminescence from QDs delayed over microseconds to milliseconds. Our results prove the existence of long-lived charge-separated states in QDs. We study the properties of delayed emission as a direct way to learn about charge carrier separation and recovery of the exciton state. A new microscopic model is developed to connect delayed emission to exciton recombination and blinking from which we conclude that bright periods in blinking are in fact not characterized by uninterrupted optical cycling as often assumed

    Total internal reflection fluorescence imaging using an upconverting cover slip for multicolour evanescent excitation

    No full text
    Total internal reflection fluorescence microscopy is well known as a means of studying surface-bound structures in cell biology. It is usually measured either by coupling a light source to the sample using a prism or with a special objective where light passing through the periphery of the lens illuminates the contact region beyond the critical angle. In this study we present a new and simple approach to total internal reflection fluorescence microscopy where the sample is mounted on a cover slip prepared from a high-index upconverting glass-ceramic. Excitation of the cover slip with a low-cost near-infrared laser diode generates intense narrow-band visible emission within the cover slip, some of which is totally internally reflected. This emission gives rise to an evanescent wave at the interface and hence can excite surface-bound fluorescent species. Depending on the excitation conditions the cover slip can generate violet, green and red emission and hence can excite a wide range of fluorescent labels. Fluorescence emission from the sample can be detected in spectral regions where the direct emission from the cover slip is very weak. The advantages and limitations of the technique are discussed in comparison with conventional total internal reflection fluorescence microscopy measurements and prospects for novel total internal reflection fluorescence microscopy geometries are considered
    corecore