2 research outputs found

    Metabolism Study of Anamorelin, a GHSR1a Receptor Agonist Potentially Misused in Sport, with Human Hepatocytes and LC-HRMS/MS

    No full text
    Anamorelin, developed for the treatment of cancer cachexia, is an orally active medication that improves appetite and food intake, thereby increasing body mass and physical functioning. It is classified as a growth hormone secretagogue and strictly monitored by the World Anti-Doping Agency (WADA), owing to its anabolic enhancing potential. Identifying anamorelin and/or metabolite biomarkers of consumption is critical in doping controls. However, there are currently no data available on anamorelin human metabolic fate. The aim of this study was to investigate and identify biomarkers characteristic of anamorelin intake using in silico metabolite predictions with GLORYx, in vitro incubation with 10-donor-pooled human hepatocytes, liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) analysis, and data processing with Thermo Scientific’s Compound Discoverer. In silico prediction resulted in N-acetylation at the methylalanyl group as the main transformation (score, 88%). Others including hydroxylation at the indole substructure, and oxidation and N-demethylation at the trimethylhydrazino group were predicted (score, ≤36%). Hepatocyte incubations resulted in 14 phase I metabolites formed through N-demethylation at the trimethylhydrazino group, N-dealkylation at the piperidine ring, and oxidation at the indole and methylalanyl groups; and two phase II glucuronide conjugates occurring at the indole. We propose four metabolites detected as specific biomarkers for toxicological screening

    In silico and in vitro human metabolism of IOX2, a performance-enhancing doping agent

    No full text
    IOX2 is a potent inhibitor of prolyl hydroxylase 2, a key enzyme in the regulation of hypoxia-inducible factor (HIF) and oxygen homeostasis. As such, it can be used to enhance athletic performance and is currently banned by the World Anti-Doping Agency (WADA). Detection of metabolites is critical to demonstrate drug use in doping. However, there is currently little data on IOX2 human metabolism. Our aim was to identify relevant biomarkers of IOX2 use in humans. For this purpose, IOX2 was incubated with 10-donor-pooled human hepatocytes for 3 h, incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS), and LC-HRMS/MS data were screened with Compound Discoverer (Thermo Scientific) for a comprehensive identification of IOX2 metabolites. Additionally, IOX2 human metabolites were predicted with GLORYx open-access software (University of Hamburg, Germany) to assist in the LC-HRMS/MS analysis and data mining. Thirteen metabolites were identified, oxidation at the quinolinyl group, O-glucuronidation, and combinations being predominant biotransformations. The results were consistent with previous animal studies and a single case of oral microdose administration. We suggest hydroxyquinolinyl-IOX2 as major biomarker of IOX2 use in biological samples, glucuronide hydrolysis being critical to increase IOX2 and hydroxyquinolinyl-IOX2 detectability in urine
    corecore