12 research outputs found

    Palmitoylation of claudins is required for efficient tight-junction localization

    Get PDF
    Palmitoylation of integral membrane proteins can affect intracellular trafficking, protein-protein interactions and protein stability. The goal of the present study was to determine whether claudins, transmembrane-barrier-forming proteins of the tight junction, are palmitoylated and whether this modification has functional implications for the tight-junction barrier. Claudin-14, like other members of the claudin family, contains membrane-proximal cysteines following both the second and the fourth transmembrane domains, which we speculated could be modified b

    Loss of ASP but not ROPN1 reduces mammalian ciliary motility

    Get PDF
    Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ASP, ROPN1, SP17, and CABYR) share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease

    Safety Evaluation -Environmental Air Pollution and Brain Damage

    No full text
    ABSTRACT Exposure to complex mixtures of air pollutants produces in ammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemica l expression of nuclear factor-kappa beta (NF-j B) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-j B and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequen t damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neuro brillary tangles. Persistent pulmonary in ammation and deteriorating olfactory and respiratory barriers may play a role in the neuropatholog y observed in the brains of these highly exposed canines. Neurodegenerativ e disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role
    corecore