36 research outputs found

    Localized Character of 4f Electrons in CeRhx_x(x=2,3) and CeNix_x(x=2,5)

    Full text link
    We have measured Ce 4f spectral weights of extremely α\alpha-like Ce-transition metal intermetallic compounds CeRhx_x (x=2,3) and CeNix_x (x=2,5) by using the {\it bulk-sensitive} resonant photoemission technique at the Ce M5M_5(3d5/24f3d_{5/2}\to4f)-edge. Unprecedentedly high energy resolution and longer escape depth of photoemitted electron at this photon energy enabled us to distinguish the sharp Kondo resonance tails at the Fermi level, which can be well described by the Gunnarsson-Sch\"onhammer(GS) calculation based on the Anderson Impurity Hamiltonian. On the other hand, the itinerant 4f band description shows big discrepancies, which implies that Ce 4f electrons retain localized characters even in extremely α\alpha-like compounds.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Faithful chaperones

    Get PDF
    This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed
    corecore