12 research outputs found

    Alignment procedure for detector integration and characterization of the CaSSIS instrument onboard the TGO mission

    Get PDF
    The Colour and Stereo Surface Imaging System (CaSSIS) is a high-resolution camera for the ESA ExoMars Trace Gas Orbiter mission launched in March 2016. CaSSIS is capable of acquiring color stereo images of features on the surface of Mars to better understand the processes related to trace gas emission. The optical configuration of CaSSIS is based on a three-mirror anastigmatic off-axis imager with a relay mirror; to attain telecentric features and to maintain compact the design, the relay mirror has power. The University of Bern had the task of detector integration and characterization of CaSSIS focal plane. An OGSE (Optical Ground Support Equipment) characterization facility was set up for this purpose. A pinhole, imaged through an off-axis paraboloidal mirror, is used to produce a collimated beam. In this work, the procedures to align the OGSE and to link together the positions of each optical element will be presented. A global Reference System (RS) has been defined using an optical cube placed on the optical bench (OB) and linked to gravity through its X component; this global RS is used to correlate the alignment of the optical components. The main steps to characterize the position of the object to that of the CaSSIS focal plane have been repeated to guide and to verify the operations performed during the alignment procedures. A calculation system has been designed to work on the optical setup and on the detector simultaneously, and to compute online the new position of the focus plane with respect to the detector. Final results will be shown and discussed. <P /

    Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    Get PDF
    The increasing interest on space telescopes for scientific applications leads to implement the manufacturing technology of the most critical element, i.e. the primary mirror: being more suitable a large aperture, it must be lightweight and deployable. The presented topic was originally addressed to a spaceborne DIAL (Differential Absorption LIDAR) mission operating at 935.5 nm for the measurement of water vapour profile in atmosphere, whose results were presented at ICSO 2006 and 2008. Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA. The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells. The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality

    Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    Get PDF
    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented

    PRESS-MAG-O: a unique instrument to probe materials and phenomena under extreme conditions at Frascati

    No full text
    PRESS-MAG-O is a new instrument under commission at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) designed to investigate materials under extreme conditions. The instrument, once completed, will allow combining high harmonic AC magnetic susceptibility measurements and magneto-optic experiments on samples under high pressures (HP), with a variable DC magnetic field in a wide temperature range. The system is designed to work at SINBAD, the IR synchrotron radiation beamline operational since 2001 at DA phi NE (Double Annular phi-factory for Nice Experiments), the storage ring of the Laboratori Nazionali di Frascati of the INFN. HP will be applied up to about 20GPa to samples inside a Cu-Be diamond anvil cell designed to allow concurrent FTIR experiments and high harmonic AC susceptibility measurements in a DC magnetic field up to 8T and in a wide temperature range

    Status of PRESS-MAG-O: The experimental apparatus to probe materials and phenomena under extreme conditions at Frascati

    No full text
    In this contribution we up-to-date the status of the PRESS-MAG-O device, a new instrument under commissioning at the INFN designed to perform magnetic and spectroscopic experiments on samples under extreme conditions. The system has been designed to work at SINBAD, the IR synchrotron radiation beamline operational at DA Phi NE. The instrument, that is the result of a significant R&D, will allow performing concurrent high harmonic ac magnetic susceptibility measurements and magnetooptic experiments on a sample under high pressure, with a variable DC magnetic field in a wide temperature range. The vacuum vessel has been designed with four crossing windows to allow optical measurements in the transmission geometry on the sample loaded inside a Diamond Anvil Cell. A new superconducting miniaturized micro-SQUID gradiometer has been also developed to detect the low magnetic signal of the sample and a customized optical system has also been designed to perform IR synchrotron radiation experiments. (C) 2010 Elsevier Ltd. All rights reserved

    The CaSSIS imaging system: optical performance overview

    Get PDF
    The Colour and Stereo Surface Imaging System (CaSSIS) is the high-resolution scientific imager on board the European Space Agency’s (ESA) ExoMars Trace Gas Orbiter (TGO) which was launched on 14th March 2016 to Mars. CaSSIS will observe the Martian surface from an altitude of 400 km with an optical system based on a modified TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror. The camera EPD (Entrance Pupil Diameter) is 135 mm, and the expected focal length is 880 mm, giving an F# 6.5 in the wavelength range of 400- 1100 nm with a distortion designed to be less than 2%. CaSSIS will operate in a “push-frame” mode with a monolithic Filter Strip Assembly (FSA) produced by Optics Balzers Jena GmbH selecting 4 colour bands and integrated on the focal plane by Leonardo-Finmeccanica SpA (under TAS-I responsibility). The detector is a spare of the Simbio-Sys detector of the Italian Space Agency (ASI), developed by Raytheon Vision Systems. It is a 2kx2k hybrid Si-PIN array with a 10 μm pixel pitch. A scale of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 47 km on the Martian surface. The University of Bern was in charge of the full instrument integration as well as the characterization of the focal plane and calibration of the entire instrument. The paper will present an overview of the CaSSIS telescope and FPA optical performance. The preliminary results of on-ground calibration and the first commissioning campaign (April 2016) will be described

    First light of Cassis: the stereo surface imaging system onboard the exomars TGO

    Get PDF
    The Colour and Stereo Surface Imaging System (CaSSIS) camera was launched on 14 March 2016 onboard the ExoMars Trace Gas Orbiter (TGO) and it is currently in cruise to Mars. The CaSSIS high resolution optical system is based on a TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror compacting the CFRP (Carbon Fiber Reinforced Polymer) structure. The camera EPD (Entrance Pupil Diameter) is 135 mm and the focal length is 880 mm, giving an F# 6.5 system; the wavelength range covered by the instrument is 400-1100 nm. The optical system is designed to have distortion of less than 2%, and a worst case Modulation Transfer Function (MTF) of 0.3 at the detector Nyquist spatial frequency (i.e. 50 lp/mm). The Focal Plane Assembly (FPA), including the detector, is a spare from the Simbio-Sys instrument of the Italian Space Agency (ASI). Simbio-Sys will fly on ESA’s BepiColombo mission to Mercury in 2018. The detector, developed by Raytheon Vision Systems, is a 2k×2k hybrid Si-PIN array with 10 μm-pixel pitch. The detector allows snap shot operation at a read-out rate of 5 Mpx/s with 14-bit resolution. CaSSIS will operate in a push-frame mode with a Filter Strip Assembly (FSA), placed directly above the detector sensitive area, selecting 4 colour bands. The scale at a slant angle of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 6.3 km on the Martian surface, and covering a Field of View (FoV) of 1.33° cross track × 0.88° along track. The University of Bern was in charge of the full instrument integration as well as the characterisation of the focal plane of CaSSIS. The paper will present an overview of CaSSIS and the optical performance of the telescope and the FPA. The preliminary results of the on-ground calibration campaign and the first light obtained during the commissioning and pointing campaign (April 2016) will be described in detail. The instrument is acquiring images with an average Point Spread Function at Full-Width-Half-Maximum (PSF FWHM) of < 1.5 px, as expected

    On-Ground Performance and Calibration of the ExoMars Trace Gas Orbiter CaSSIS Imager

    No full text
    The European Space Agency’s ExoMars Trace Gas Orbiter (TGO) seeks to investigate the biological or geological origin of trace gases found on Mars. The TGO carries a payload of four instruments in order to reach its scientific goals, including the Colour and Stereo Surface Imaging System (CaSSIS). CaSSIS is a colour and stereo telescopic camera that will be capable of taking high-resolution images of the martian surface. Before shipment of the instrument for integration onto the TGO, a detailed calibration campaign was performed, and a number of calibration products were gathered and utilised as part of the in-flight calibration campaign. This paper presents the results of on-ground calibration measurements carried out in order to assess the pre-flight performance of CaSSIS. All indications are that CaSSIS will perform very well on arrival at Mars and will be successful in reaching its scientific objectives
    corecore