3,129 research outputs found

    A superconducting qubit with Purcell protection and tunable coupling

    Full text link
    We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits. At g = 0 the qubit is in a decoherence free subspace with respect to spontaneous emission induced by the Purcell effect. Furthermore we show that in the decoherence free subspace the state of the qubit can still be measured by either a dispersive shift on the resonance frequency of the resonator or by a cycling-type measurement.Comment: 4 pages, 3 figure

    Robust randomized benchmarking of quantum processes

    Full text link
    We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.Comment: 4+ pages, 1 figure, and 1 tabl

    Tunable coupling in circuit quantum electrodynamics with a superconducting V-system

    Full text link
    Recent progress in superconducting qubits has demonstrated the potential of these devices for the future of quantum information processing. One desirable feature for quantum computing is independent control of qubit interactions as well as qubit energies. We demonstrate a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independent control over the qubit energy and dipole coupling to a superconducting cavity. We demonstrate dynamic access to the strong coupling regime by tuning the coupling strength from less than 200 kHz to more than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multi-qubit system.Comment: 5 pages, 4 figure

    Pure-state quantum trajectories for general non-Markovian systems do not exist

    Full text link
    Since the first derivation of non-Markovian stochastic Schr\"odinger equations, their interpretation has been contentious. In a recent Letter [Phys. Rev. Lett. 100, 080401 (2008)], Di\'osi claimed to prove that they generate "true single system trajectories [conditioned on] continuous measurement". In this Letter we show that his proof is fundamentally flawed: the solution to his non-Markovian stochastic Schr\"odinger equation at any particular time can be interpreted as a conditioned state, but joining up these solutions as a trajectory creates a fiction.Comment: 4 page
    • …
    corecore