484 research outputs found
Low-field Instabilities in NbSn Multifilamentary Wires: the Possible Role of Unreacted Nb
We report an experimental study aiming to demonstrate the not negligible role of unreacted Nb on the magnetic instabilities in superconducting NbSn multifilamentary wires, observable through partial flux jumps at magnetic field values below 0.5 T. The analysed wires were recently developed for use as dipoles required in future high-energy proton accelerators and are based on powder-in-tube technology. We studied both unreacted (only involving Nb filaments) and reacted wires, finding flux jump instabilities in both cases when performing magnetic measurements. The results can be interpreted on the basis of the critical state model and are coherent with the intrinsic stability criterion
HREELS study of 0, molecular chemisorption on Ag( 001)
Abstract O2 adsorption on Ag(OO1) at 100 K has been investigated by HREELS. Contrary to previous reports we could resolve 4 oxygen related peaks, 3 of which are due to the internal stretching vibration as confirmed by isotope labelling. The lowest frequency mode at 63 meV is assigned to molecular oxygen chemisorbed at defect sites. The further two features are very close to each other in frequency, at 79 and 84 meV. We assign them to molecules chemisorbed in a peroxidic state in two different adsorption sites. Initially both sites are Mled simultaneously while at higher coverage adsorption in the higher frequency site is favoured
Axion search with a quantum-limited ferromagnetic haloscope
A ferromagnetic axion haloscope searches for Dark Matter in the form of
axions by exploiting their interaction with electronic spins. It is composed of
an axion-to-electromagnetic field transducer coupled to a sensitive rf
detector. The former is a photon-magnon hybrid system, and the latter is based
on a quantum-limited Josephson parametric amplifier. The hybrid system consists
of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by
means of a static magnetic field. Our setup is the most sensitive rf
spin-magnetometer ever realized. The minimum detectable field is
T with 9 h integration time, corresponding to a limit on
the axion-electron coupling constant at 95% CL.
The scientific run of our haloscope resulted in the best limit on DM-axions to
electron coupling constant in a frequency span of about 120 MHz, corresponding
to the axion mass range -eV. This is also the first apparatus
to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure
Searching for galactic axions through magnetized media: QUAX status report
The current status of the QUAX R\&D program is presented. QUAX is a
feasibility study for a detection of axion as dark matter based on the coupling
to the electrons. The relevant signal is a magnetization change of a magnetic
material placed inside a resonant microwave cavity and polarized with a static
magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs,
Thessaloniki, May 15 to 19, 201
Effects of Extracorporeal Magnetic Stimulation in Fecal Incontinence.
Background: Fecal incontinence (FI) is a common condition that has devastating consequences for patients' QOL. In some patients, the conventional functional pelvic floor electrical stimulation has been effective but is an invasive and embarrassing treatment. The object of the study was to evaluate the feasibility of functional extracorporeal magnetic stimulation (FMS) in strengthening the pelvic floor muscles without an anal plug and the embarrassment of undressing. Materials and Methods: Thirty patients (26 female and 4 males) with FI were enrolled. All patients were assessed during a specialized coloproctology evaluation followed by endoanal ultrasonography and anorectal manometry. All patients underwent an FMS treatment once weekly for 8 weeks. Patients' outcome was assessed by the Cleveland Clinic Fecal Incontinence Score (CCFIS) and by the fecal incontinence QOL questionnaire (FIQL). Results: After 8 weeks, the number of solid and liquid stool leakage per week was significantly reduced (p<0.05) with a significant improvement of the CCFIS and of the FIQL (p<0.05). Moreover, the authors recorded a missed recruitment of the agonist and antagonists' defecation muscles. Conclusion: FMS is a safe, non-invasive and painless treatment for FI. It could be recommended for selected patients with non-surgical FI to ensure a rapid clinical improvement
Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials
We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and
propose an overview or our contribution to the field. We show that the
Stranski-Krastanov growth mode, recognized for a long time in these systems, is
in fact characterized by a bimodal distribution of islands for growth
temperature in the range 250-700°C. We observe firstly compact islands
whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat
islands that display a preferred height, ie independant from nominal thickness
and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We
used this effect to fabricate self-organized arrays of nanometers-thick stripes
by step decoration. Self-assembled nano-ties are also obtained for nucleation
of the flat islands on Mo at fairly high temperature, ie 800°C. Finally,
using interfacial layers and solid solutions we separate two effects on the
preferred height, first that of the interfacial energy, second that of the
continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte
Experimental Critical Current Patterns in Josephson Junction Ladders
We present an experimental and theoretical study of the magnetic field
dependence of the critical current of Josephson junction ladders. At variance
with the well-known case of a one-dimensional (1D) parallel array of Josephson
junctions the magnetic field patterns display a single minimum even for very
low values of the self-inductance parameter . Experiments
performed changing both the geometrical value of the inductance and the
critical current of the junctions show a good agreement with numerical
simulations. We argue that the observed magnetic field patterns are due to a
peculiar mapping between the isotropic Josephson ladder and the 1D parallel
array with the self-inductance parameter .Comment: 4 pages, 4 picture
A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks
We consider the problem of optimally designing a body wireless sensor
network, while taking into account the uncertainty of data generation of
biosensors. Since the related min-max robustness Integer Linear Programming
(ILP) problem can be difficult to solve even for state-of-the-art commercial
optimization solvers, we propose an original heuristic for its solution. The
heuristic combines deterministic and probabilistic variable fixing strategies,
guided by the information coming from strengthened linear relaxations of the
ILP robust model, and includes a very large neighborhood search for reparation
and improvement of generated solutions, formulated as an ILP problem solved
exactly. Computational tests on realistic instances show that our heuristic
finds solutions of much higher quality than a state-of-the-art solver and than
an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G.
Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp.
1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is
available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1
- …