3 research outputs found
The calcitonin receptor is the main mediator of LAAMA's body weight lowering effects in male mice
The anorectic action of the pancreatic hormone amylin is mainly mediated through the area postrema (AP). Amylin activates AP neurons using a heterodimeric receptor (AMY) composed of the calcitonin receptor (CTR) and the receptor activity modifying protein (RAMP 1, 2 or 3). The aim of the following experiments is to test the effects of the long acting amylin analogue (LAAMA) in RAMP1/3 knock-out (KO) male mice and in neuronal CTR KO Nestin-CreCTR male mice. In vitro, LAAMA exerted an equipotent effect on CTR and AMYs that was maintained across species. Following one week of 45% high fat diet, WT, RAMP1/3 KO and Nestin-CreCTR mice were injected daily for one week with vehicle or LAAMA. LAAMA decreased body weight gain in WT and in RAMP1/3 KO mice suggesting that RAMP1/3 are not necessary for LAAMA-induced effects. However, LAAMA was not able to produce any body lowering and anorectic effects in Nestin-CreCTR mice. This was accompanied by the absence of any c-Fos signal in the AP opposite to WT control mice. Together, these results suggest that LAAMA's effects are mainly mediated through CTR rather than specific AMY. The study of LAAMA or any amylin receptor agonist in different receptor KO mouse models helps disentangle the underlying mechanisms used by these molecules
Amylin brain circuitry
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism