41 research outputs found

    Wetting of cholesteric liquid crystals

    Full text link
    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal

    Pattern-induced anchoring transitions in nematic liquid crystals

    Get PDF
    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross section sculpted on a chemically homogeneous substrate which favors local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal case, we observe a homeotropic to planar anchoring transition as the substrate roughness is increased. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.Comment: 36 pages, 15 figures, revised version submitted to Journal of Physics: Condensed Matte
    corecore