17 research outputs found

    Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals

    Full text link
    We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system of repulsively interacting particles on the profile of the confining channel. Three different functional expressions for the confinement potential related to real experimental systems are used that can be tuned continuously from a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chain-like structure transitions. We resolve the longstanding issue why the most theories predicted a 1-2-4-3-4 sequence of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.Comment: 7 pages, 5 figure

    Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals

    Full text link
    Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the xx-direction but are confined by a parabolic potential in the yy-direction. They interact with each other through a screened power-law potential (r−ne−r/λr^{-n}e^{-r/\lambda}). In vertically coupled systems the channels are stacked above each other in the direction perpendicular to the (x,y)(x,y)-plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand the vertically coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further we calculated the normal modes for the Wigner crystals in both cases. From MC simulations we found that in the case of vertically coupled systems the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.Comment: 9 pages, 13 figure

    Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field

    Full text link
    The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.Comment: Submitted to Phys. Rev. E (10 pages, 12 figures

    Ginzburg-Landau theory of the zig-zag transition in quasi-one-dimensional classical Wigner crystals

    Full text link
    We present a mean-field description of the zig-zag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λr^{-n}e^{-r/\lambda}, that are confined by a power-law potential (yαy^{\alpha}). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α\alpha and nn. Close to the transition point for the zig-zag phase transition, the scaling behavior of the order parameter is determined. For α=2\alpha=2 the zig-zag transition from a single to a double chain is of second order, while for α>2\alpha>2 the one chain configuration is always unstable and for α<2\alpha<2 the one chain ordered state becomes unstable at a certain critical density resulting in jumps of single particles out of the chain.Comment: 12 pages, 11 figure
    corecore