44 research outputs found
Entropijska produkcija pri stacionarnom provodenju topline kroz stijenku cilindra s toplinskim izvorom
U radu je detaljno analiziran problem minimizacije entropijske produkcije za model stacionarnog provoÄenja topline u stijenci cilindra s toplinskim
izvorom i nametnutim izotermnim rubnim uvjetima. Problem je rijeÅ”en uvoÄenjem relevantnih bezdimenzijskih varijabli: bezdimenzijske izdaÅ”nosti
toplinskog izvora, omjera vanjskog i unutraÅ”njeg polumjera cilindra, kao i omjera rubnih temperatura. PomoÄu tih veliÄina i bezdimenzijskog polumjera
izvedeni su analitiÄki izrazi za temperaturno polje, te lokalnu i ukupnu entropijsku produkciju te je postavljen kriterij za postojanje minimuma entropijske
produkcije. Rezultati provedene analize su obrazloženi te je prikazano podruÄje vrijednosti omjera polumjera cilindra, te omjera rubnih temperatura, za
odreÄene vrijednosti izdaÅ”nosti toplinskog izvora, u kojem postoji minimum entropijske produkcije
Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle
Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The
irreversibility of the adiabatic processes in turbine and compressor is taken
into account through their isentropic efficiencies. The net work per cycle,
the thermal efficiency and the two exergy efficiencies are expressed as
functions of the four dimensionless variables: the isentropic efficiencies of
turbine and compressor, the pressure ratio, and the temperature ratio. It is
shown that the maximal values of the net work per cycle, the thermal and the
exergy efficiency are achieved when the isentropic efficiencies and
temperature ratio are as high as possible, while the different values of
pressure ratio that maximize the net work per cycle, the thermal and the
exergy efficiencies exist. These pressure ratios increase with the increase
of the temperature ratio and the isentropic efficiency of compressor and
turbine. The increase of the turbine isentropic efficiency has a greater
impact on the increase of the net work per cycle and the thermal efficiency
of a Brayton cycle than the same increase of compressor isentropic
efficiency. Finally, two goal functions are proposed for thermodynamic
optimization of a Brayton cycle for given values of the temperature ratio and
the compressor and turbine isentropic efficiencies. The first maximizes the
sum of the net work per cycle and thermal efficiency while the second the net
work per cycle and exergy efficiency. In both cases the optimal pressure
ratio is closer to the pressure ratio that maximizes the net work per cycle