123 research outputs found
Cellulose hydrolysis-hydrogenolysis to ethyleneglycol and propyleneglycol over Ru and heteropolyacid catalysts
Еthylene and propylene glycols (EG and PG) are widely used in industry to produce cooling systems and other valuable chemical products. But PG is non-toxic, therefore it is used in industries where EG can not be used: pharmaceutical, food, etc. This polyols produced by "one-pot" method, which is one of the promising and effective methods for producing alcohols from cellulose under harsh conditions. The purpose of this study was to determine the optimal composition of the solid bifunctional catalyst and the conditions of its preparation for the hydrolysis-hydrogenolysis of cellulose. Catalists are Ru-HPA/ZrO[2], RuHPA/Nb[2]O[5] and Ru/CsHPK. As a result of the study, the most promising catalyst system is 1%Ru/Cs[3.5]H[0.5]SiW[12]O[40]. In the presence of 1%Ru/CsHPA, the yield of 25% EG and 11% PG was detected (EG and PG selectivity is 60 and 27%). The activity of the catalysts was studied in the presence of Ca(OH)[2]
Исследование и повышение эффективности процесса дегидрирования высших парафинов
Объектом исследования является установка получения олефинов.
Цель работы – оптимизация режима работы установки путем подбора оптимального режима подачи воды с целью сбережения ресурса платинового катализатора и повышения эффективности процесса. Методы исследования – метод математического моделирования, термогравиметрический метод анализа. В процессе исследования проводились мониторинг нескольких сырьевых циклов работы реактора дегидрирования, анализ термограмм образцов катализаторов, моделирование процесса, оптимизационные расчеты. В результате исследования была определена структура образовавшегося на поверхности катализатора кокса, а также был рассчитан рекомендуемый режим подачи воды в реактор, позволяющий сохранить ресурс катализатора и увеличить длительность сырьевого цикла.Object of research is unit olefins production. Purpose of work is optimization of plant operating mode by selection the optimal mode of water supply with the view of saving platinum catalyst life time and improving process efficiency. Methods of research are mathematical modeling and thermogravimetric analysis. Monitoring of few feedstock cycles of dehydrogenation reactor operation, analysis of thermograms of catalyst samples, process modeling, optimization calculations were perform in process of research. Consequently of research, structure of formed on the catalyst surface coke was determine, and recommended mode of water supply to reactor, which allows to save the Pt-catalyst life time and increase duration of feedstock cycle, was calculated
Aberrant DNA hypermethylation of the ITIH5 tumor suppressor gene in acute myeloid leukemia
Epigenetic mechanisms such as DNA hypermethylation and modifications of histone amino acids are known to play an important role in the control of gene expression both in normal human development and tumorigenesis. Hypermethylation of CpG islands within promoter regions of tumor suppressor genes is associated with transcriptional inactivation and represents, in addition to genetic aberrations, an important mechanism of gene silencing in the pathogenesis of human cancer. Inter-α-trypsine inhibitors (ITIs) are a family of serine protease inhibitors consisting of one light chain (bikunin) and two heavy chains (ITI heavy chains, ITIHs). ITIHs stabilize the extracellular matrix (ECM) by interacting with hyaluronic acid, which is a major ECM component. Hypermethylation in the upstream region of the promoter-associated CpG island of ITIH5, the most recently described member of the ITIH family, has been previously detected in breast cancer and was associated with an adverse outcome. In this study, we determined the DNA methylation status of the promoter region near the transcription start site of the ITIH5 tumor suppressor gene in leukemia cell lines and primary samples from patients with acute myeloid leukemia (AML) as well as the potential use of demethylating agents to restore a demethylated state of the promoter. Aberrant ITIH5 promoter hypermethylation occurred in 15 of 104 (14.4%) diagnostic AML samples. There were no statistically significant correlations between the ITIH5 methylation status and clinical prognostic parameters. Our results indicate that aberrant ITIH5 promoter hypermethylation is a novel epigenetic event in AML
Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia
<p>Abstract</p> <p>Background</p> <p>To elucidate the genes involved in the neoplastic transformation of B cells, global gene expression profiles were generated using Affymetrix U74Av2 microarrays, containing 12,488 genes, for four different groups of mouse B-cell lymphomas and six subtypes of pristane-induced mouse plasma cell tumors, three of which developed much earlier than the others.</p> <p>Results</p> <p>Unsupervised hierarchical cluster analysis exhibited two main sub-clusters of samples: a B-cell lymphoma cluster and a plasma cell tumor cluster with subclusters reflecting mechanism of induction. This report represents the first step in using global gene expression to investigate molecular signatures related to the role of cooperating oncogenes in a model of Myc-induced carcinogenesis. Within a single subgroup, e.g., ABPCs, plasma cell tumors that contained typical T(12;15) chromosomal translocations did not display gene expression patterns distinct from those with variant T(6;15) translocations, in which the breakpoint was in the <it>Pvt-1 </it>locus, 230 kb 3' of c-<it>Myc</it>, suggesting that c-<it>Myc </it>activation was the initiating factor in both. When integrated with previously published Affymetrix array data from human multiple myelomas, the IL-6-transgenic subset of mouse plasma cell tumors clustered more closely with MM1 subsets of human myelomas, slow-appearing plasma cell tumors clustered together with MM2, while plasma cell tumors accelerated by v-Abl clustered with the more aggressive MM3-MM4 myeloma subsets. Slow-appearing plasma cell tumors expressed <it>Socs1 </it>and <it>Socs2 </it>but v-<it>Abl</it>-accelerated plasma cell tumors expressed 4–5 times as much. Both v-<it>Abl</it>-accelerated and non-v-<it>Ab</it>l-associated tumors exhibited phosphorylated STAT 1 and 3, but only v-Abl-accelerated plasma cell tumors lost viability and STAT 1 and 3 phosphorylation when cultured in the presence of the v-Abl kinase inhibitor, STI-571. These data suggest that the Jak/Stat pathway was critical in the transformation acceleration by v-Abl and that v-Abl activity remained essential throughout the life of the tumors, not just in their acceleration. A different pathway appears to predominate in the more slowly arising plasma cell tumors.</p> <p>Conclusion</p> <p>Gene expression profiling differentiates not only B-cell lymphomas from plasma cell tumors but also distinguishes slow from accelerated plasma cell tumors. These data and those obtained from the sensitivity of v-Abl-accelerated plasma cell tumors and their phosphorylated STAT proteins indicate that these similar tumors utilize different signaling pathways but share a common initiating genetic lesion, a c-<it>Myc</it>-activating chromosome translocation.</p
Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer
Background
Suppressors of cytokine signaling (SOCS) are important negative feedback regulators of the JAK/STAT signaling pathway, and have been recently investigated for their role in the development of different cancers. In this study, we examined the expression of SOCS1-7 genes in normal and breast cancer tissue and correlated this with several clinico-pathological and prognostic factors.
Methods
SOCS1-7 mRNA extraction and reverse transcription were performed on fresh frozen breast cancer tissue samples (n = 127) and normal background breast tissue (n = 31). Transcript levels of expression were determined using real-time PCR and analyzed against TNM stage, tumour grade and clinical outcome over a 10 year follow-up period.
Results
SOCS1,4,5,6 and 7 expression decreased with increased TNM stage (TNM1 vs. TNM3 p = 0.039, TNM1 vs. TNM4 p = 0.016, TNM2 vs. TNM4 p = 0.025, TNM1 vs. TNM3 p = 0.012, and TNM1 vs. TNM3 p = 0.044 respectively). SOCS2 and 3 expression decreased with increased Nottingham Prognostic Index (NPI) (NPI1 vs. NPI3 p = 0.033, and NPI2 vs. NPI3 p = 0.041 respectively). SOCS7 expression decreased with higher tumour grade (Grade 3 vs. Grade 2 p = 0.037). After a median follow up period of 10 years, we found higher levels of SOCS1,2 and 7 expression among those patients who remained disease-free compared to those who developed local recurrence (p = 0.0073, p = 0.021, and p = 0.039 respectively). Similarly, we found higher levels of SOCS 2,4, and 7 expression in those who remained disease-free compared to those who developed distant recurrence (p = 0.022, p = 0.024, and p = 0.033 respectively). Patients who remained disease-free had higher levels of SOCS1 and 2 expression compared to those who died from breast cancer (p = 0.02 and p = 0.033 respectively). The disease free survival (DFS) and overall survival (OS) curves showed that higher levels of SOCS1, 3 and 7 were significant predictors of higher DFS (p = 0.015, p = 0.024 and 0.03 respectively) and OS (p = 0.005, p = 0.013 and p = 0.035 respectively). Higher levels of SOCS 4 were significant in predicting better OS (p = 0.007) but not DFS. Immunohistochemical staining of representative samples showed a correlation between SOCS1, 3, 7 protein staining and the SOCS1, 3, 7 mRNA expression.
Conclusion
Higher mRNA expression levels of SOCS1, 3, 4 and 7 are significantly associated with earlier tumour stage and better clinical outcome in human breast cancer
Favorable prognostic value of SOCS2 and IGF-I in breast cancer
<p>Abstract</p> <p>Background</p> <p>Suppressor of cytokine signaling (SOCS) proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer.</p> <p>Methods</p> <p>We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry.</p> <p>Results</p> <p>SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015) and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026). In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002).</p> <p>Conclusion</p> <p>This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF-I is a feature of differentiated and less malignant tumors.</p
Manual therapy with and without vestibular rehabilitation for cervicogenic dizziness: a systematic review
<p>Abstract</p> <p>Background</p> <p>Manual therapy is an intervention commonly advocated in the management of dizziness of a suspected cervical origin. Vestibular rehabilitation exercises have been shown to be effective in the treatment of unilateral peripheral vestibular disorders, and have also been suggested in the literature as an adjunct in the treatment of cervicogenic dizziness. The purpose of this systematic review is to evaluate the evidence for manual therapy, in conjunction with or without vestibular rehabilitation, in the management of cervicogenic dizziness.</p> <p>Methods</p> <p>A comprehensive search was conducted in the databases Scopus, Mantis, CINHAL and the Cochrane Library for terms related to manual therapy, vestibular rehabilitation and cervicogenic dizziness. Included studies were assessed using the Maastricht-Amsterdam criteria.</p> <p>Results</p> <p>A total of fifteen articles reporting findings from thirteen unique investigations, including five randomised controlled trials and eight prospective, non-controlled cohort studies were included in this review. The methodological quality of the included studies was generally poor to moderate. All but one study reported improvement in dizziness following either unimodal or multimodal manual therapy interventions. Some studies reported improvements in postural stability, joint positioning, range of motion, muscle tenderness, neck pain and vertebrobasilar artery blood flow velocity.</p> <p>Discussion</p> <p>Although it has been argued that manual therapy combined with vestibular rehabilitation may be superior in the treatment of cervicogenic dizziness, there are currently no observational and experimental studies demonstrating such effects. A rationale for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is presented.</p> <p>Conclusion</p> <p>There is moderate evidence to support the use of manual therapy, in particular spinal mobilisation and manipulation, for cervicogenic dizziness. The evidence for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is lacking. Further research to elucidate potential synergistic effects of manual therapy and vestibular rehabilitation is strongly recommended.</p
A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms
Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1 that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs
Exploiting bacterial DNA gyrase as a drug target: current state and perspectives
DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme
- …