618 research outputs found

    Ground State Wave Function of the Schr\"odinger Equation in a Time-Periodic Potential

    Full text link
    Using a generalized transfer matrix method we exactly solve the Schr\"odinger equation in a time periodic potential, with discretized Euclidean space-time. The ground state wave function propagates in space and time with an oscillating soliton-like wave packet and the wave front is wedge shaped. In a statistical mechanics framework our solution represents the partition sum of a directed polymer subjected to a potential layer with alternating (attractive and repulsive) pinning centers.Comment: 11 Pages in LaTeX. A set of 2 PostScript figures available upon request at [email protected] . Physical Review Letter

    Depinning transition of a directed polymer by a periodic potential: a d-dimensional solution

    Full text link
    We study the depinning phase transition of a directed polymer in a dd-dimensional space by a periodic potential localized on a straight line. We give exact formulas in all dimensions for the critical pinning we need to localize the polymer. We show that a bounded state can still arise even if, in average, the potential layer is not attractive and for diverging values of the potential on the repulsive sites. The phase transition is of second order.Comment: 11 Pages in LaTeX. Figures available from the authors. [email protected] (e-mail address

    Error threshold in the evolution of diploid organisms

    Full text link
    The effects of error propagation in the reproduction of diploid organisms are studied within the populational genetics framework of the quasispecies model. The dependence of the error threshold on the dominance parameter is fully investigated. In particular, it is shown that dominance can protect the wild-type alleles from the error catastrophe. The analysis is restricted to a diploid analogue of the single-peaked landscape.Comment: 9 pages, 4 Postscript figures. Submitted to J. Phy. A: Mat. and Ge

    On measurement-based quantum computation with the toric code states

    Get PDF
    We study measurement-based quantum computation (MQC) using as quantum resource the planar code state on a two-dimensional square lattice (planar analogue of the toric code). It is shown that MQC with the planar code state can be efficiently simulated on a classical computer if at each step of MQC the sets of measured and unmeasured qubits correspond to connected subsets of the lattice.Comment: 9 pages, 5 figure

    Gauge and Poincare' Invariant Regularization and Hopf Symmetries

    Full text link
    We consider the regularization of a gauge quantum field theory following a modification of the Polchinski proof based on the introduction of a cutoff function. We work with a Poincare' invariant deformation of the ordinary point-wise product of fields introduced by Ardalan, Arfaei, Ghasemkhani and Sadooghi, and show that it yields, through a limiting procedure of the cutoff functions, to a regularized theory, preserving all symmetries at every stage. The new gauge symmetry yields a new Hopf algebra with deformed co-structures, which is inequivalent to the standard one.Comment: Revised version. 14 pages. Incorrect statements eliminate

    Finite Temperature Depinning of a Flux Line from a Nonuniform Columnar Defect

    Full text link
    A flux line in a Type-II superconductor with a single nonuniform columnar defect is studied by a perturbative diagrammatic expansion around an annealed approximation. The system undergoes a finite temperature depinning transition for the (rather unphysical) on-the-average repulsive columnar defect, provided that the fluctuations along the axis are sufficiently large to cause some portions of the column to become attractive. The perturbative expansion is convergent throughout the weak pinning regime and becomes exact as the depinning transition is approached, providing an exact determination of the depinning temperature and the divergence of the localization length.Comment: RevTeX, 4 pages, 3 EPS figures embedded with epsf.st

    Subextensive singularity in the 2D ±J\pm J Ising spin glass

    Full text link
    The statistics of low energy states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. The behavior of the density of states near the ground state energy is analyzed as a function of LL, in order to obtain the low temperature behavior of the model. For large finite LL there is a range of TT in which the heat capacity is proportional to T5.33±0.12T^{5.33 \pm 0.12}. The range of TT in which this behavior occurs scales slowly to T=0T = 0 as LL increases. Similar results are found for pp = 0.25. Our results indicate that this model probably obeys the ordinary hyperscaling relation dν=2αd \nu = 2 - \alpha, even though Tc=0T_c = 0. The existence of the subextensive behavior is attributed to long-range correlations between zero-energy domain walls, and evidence of such correlations is presented.Comment: 13 pages, 7 figures; final version, to appear in J. Stat. Phy

    On Finite Noncommutativity in Quantum Field Theory

    Full text link
    We consider various modifications of the Weyl-Moyal star-product, in order to obtain a finite range of nonlocality. The basic requirements are to preserve the commutation relations of the coordinates as well as the associativity of the new product. We show that a modification of the differential representation of the Weyl-Moyal star-product by an exponential function of derivatives will not lead to a finite range of nonlocality. We also modify the integral kernel of the star-product introducing a Gaussian damping, but find a nonassociative product which remains infinitely nonlocal. We are therefore led to propose that the Weyl-Moyal product should be modified by a cutoff like function, in order to remove the infinite nonlocality of the product. We provide such a product, but it appears that one has to abandon the possibility of analytic calculation with the new product.Comment: 13 pages, reference adde

    The Tangled Nature model as an evolving quasi-species model

    Full text link
    We show that the Tangled Nature model can be interpreted as a general formulation of the quasi-species model by Eigen et al. in a frequency dependent fitness landscape. We present a detailed theoretical derivation of the mutation threshold, consistent with the simulation results, that provides a valuable insight into how the microscopic dynamics of the model determine the observed macroscopic phenomena published previously. The dynamics of the Tangled Nature model is defined on the microevolutionary time scale via reproduction, with heredity, variation, and natural selection. Each organism reproduces with a rate that is linked to the individuals' genetic sequence and depends on the composition of the population in genotype space. Thus the microevolutionary dynamics of the fitness landscape is regulated by, and regulates, the evolution of the species by means of the mutual interactions. At low mutation rate, the macro evolutionary pattern mimics the fossil data: periods of stasis, where the population is concentrated in a network of coexisting species, is interrupted by bursts of activity. As the mutation rate increases, the duration and the frequency of bursts increases. Eventually, when the mutation rate reaches a certain threshold, the population is spread evenly throughout the genotype space showing that natural selection only leads to multiple distinct species if adaptation is allowed time to cause fixation.Comment: Paper submitted to Journal of Physics A. 13 pages, 4 figure

    Experimental results of crystal-assisted slow extraction at the SPS

    Full text link
    The possibility of extracting highly energetic particles from the Super Proton Synchrotron (SPS) by means of silicon bent crystals has been explored since the 1990's. The channelling effect of a bent crystal can be used to strongly deflect primary protons and eject them from the synchrotron. Many studies and experiments have been carried out to investigate crystal channelling effects. The extraction of 120 and 270 GeV proton beams has already been demonstrated in the SPS with dedicated experiments located in the ring. Presently in the SPS, the UA9 experiment is performing studies to evaluate the possibility to use bent silicon crystals to steer particle beams in high energy accelerators. Recent studies on the feasibility of extraction from the SPS have been made using the UA9 infrastructure with a longer-term view of using crystals to help mitigate slow extraction induced activation of the SPS. In this paper, the possibility to eject particles into the extraction channel in LSS2 using the bent crystals already installed in the SPS is presented. Details of the concept, simulations and measurements carried out with beam are presented, before the outlook for the future is discussed.Comment: 4 pages, 7 figures, submitted to to International Particle Accelerator Conference (IPAC) 2017 in Copenhagen, Denmar
    corecore