286 research outputs found

    Fault detection and location in DC systems from initial di/dt measurement

    Get PDF
    The use of DC for primary power distribution has the potential to bring significant design, cost and efficiency benefits to a range of power transmission and distribution applications. The use of active converter technologies within these networks is a key enabler for these benefits to be realised, however their integration can lead to exceptionally demanding electrical fault protection requirements, both in terms of speed and fault discrimination. This paper describes a novel fault detection method which exceeds the capability of many current protection methods in order to meet these requirements. The method utilises fundamental characteristics of the converter filter capacitance’s response to electrical system faults to estimate fault location through a measurement of fault path inductance. Crucially, the method has the capability to detect and discriminate fault location within microseconds of the fault occurring, facilitating its rapid removal from the network

    Impact of converter interface type on the protection requirements for DC aircraft power systems

    Get PDF
    The utilization of converter interfaces has the potential to significantly alter the protection system design requirements in future aircraft platforms. However, the impact these converters will have can vary widely, depending on the topology of converter, its filter requirements and its control strategy. This means that the precise impact on the network fault response is often difficult to quantify. Through the analysis of example converter topologies and literature on the protection of DC networks, this paper tackles this problem by identifying key design characteristics of converters which influence their fault response. Using this information, the converters are classified based on their general fault characteristics, enabling potential protection issues and solutions to be readily identified. Finally, the paper discusses the potential for system level design benefits through the optimisation of converter topology and protection system design

    Determination of protection system requirements for DC UAV electrical power networks for enhanced capability and survivability

    Get PDF
    A growing number of designs of future Unmanned Aerial Vehicle (UAV) applications utilise dc for the primary power distribution method. Such systems typically employ large numbers of power electronic converters as interfaces for novel loads and generators. The characteristic behaviour of these systems under electrical fault conditions, and in particular their natural response, can produce particularly demanding protection requirements. Whilst a number of protection methods for multi-terminal dc networks have been proposed in literature, these are not universally applicable and will not meet the specific protection challenges associated with the aerospace domain. Through extensive analysis, this paper seeks to determine the operating requirements of protection systems for compact dc networks proposed for future UAV applications, with particular emphasis on dealing with the issues of capacitive discharge in these compact networks. The capability of existing multi-terminal dc network protection methods and technologies are then assessed against these criteria in order to determine their suitability for UAV applications. Recommendations for best protection practice are then proposed and key inhibiting research challenges are discussed

    A Combined Compton and Coded-aperture Telescope for Medium-energy Gamma-ray Astrophysics

    Full text link
    A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, e.g. a possible explanation for the excess positron emission from the Galactic Center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter Cadmium Zinc Telluride (CdZnTe) detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope showed achievable energy resolutions of 1.68%\% FWHM at 511 keV and 1.11%\% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63^{\circ} FWHM at 511 keV and 1.30^{\circ} FWHM at 1809 keV, and is capable of resolving sources to at least 0.2^{\circ} at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton imaging mode yields an effective area of 183 cm2^{2} at 511 keV and an anticipated all-sky sensitivity of 3.6 x 106^{-6} photons cm2^{-2} s1^{-1} for a broadened 511 keV source over a 2-year observation time. Additionally, combining a coded mask with a Compton imager to improve point source localization for positron detection has been demonstrated

    Optimizing the roles of unit and non-unit protection methods within DC microgrids

    Get PDF
    The characteristic behavior of physically compact, multiterminal dc networks under electrical fault conditions can produce demanding protection requirements. This represents a significant barrier to more widespread adoption of dc power distribution for microgrid applications. Protection schemes have been proposed within literature for such networks based around the use of non-unit protection methods. This paper shows however that there are severe limitations to the effectiveness of such schemes when employed for more complex microgrid network architectures. Even current differential schemes, which offer a more effective, though costly, protection solution, must be carefully designed to meet the design requirements resulting from the unique fault characteristics of dc microgrids. This paper presents a detailed analysis of dc microgrid behavior under fault conditions, illustrating the challenging protection requirements and demonstrating the shortcomings of non-unit approaches for these applications. Whilst the performance requirements for the effective operation of differential schemes in dc microgrids are shown to be stringent, the authors show how these may be met using COTS technologies. The culmination of this work is the proposal of a flexible protection scheme design framework for dc microgrid applications which enables the required levels of fault discrimination to be achieved whilst minimizing the associated installation costs

    Modeling and simulation enabled UAV electrical power system design

    Get PDF
    With the diversity of mission capability and the associated requirement for more advanced technologies, designing modern unmanned aerial vehicle (UAV) systems is an especially challenging task. In particular, the increasing reliance on the electrical power system for delivering key aircraft functions, both electrical and mechanical, requires that a systems-approach be employed in their development. A key factor in this process is the use of modeling and simulation to inform upon critical design choices made. However, effective systems-level simulation of complex UAV power systems presents many challenges, which must be addressed to maximize the value of such methods. This paper presents the initial stages of a power system design process for a medium altitude long endurance (MALE) UAV focusing particularly on the development of three full candidate architecture models and associated technologies. The unique challenges faced in developing such a suite of models and their ultimate role in the design process is explored, with case studies presented to reinforce key points. The role of the developed models in supporting the design process is then discussed

    Fatigue and bending behaviour of friction stir welded DH36 steel

    Get PDF
    Friction stir welding presents many advantages over conventional welding techniques; however, there is limited published data with regards to the fatigue and bending performance of friction stir welded steels. Hence, this investigation aims to evaluate friction stir welded DH36 steel subjected to these loading conditions. A comprehensive fatigue and bending programme has been implemented to assess the impact of process related features, such as weld root flaws, on the welds’ performance. Strain gauges located on the top and bottom surfaces of fatigue samples allowed the secondary bending stresses to be quantified when clamped in the fatigue test machine. Bend test samples were completed to a 180° U-bend for as-welded and ground samples. The bend testing programme demonstrated satisfactory performance of friction stir welded DH36 steel. Despite the presence of surface flaws, cracks did not propagate in bending indicating adequate levels of toughness. Fatigue performance was poor in comparison with results from similar welds however, it was found to be acceptable in terms of class recommendations for fusion welding. This lower performance was predominantly attributed to a weld root flaw. Strain gauge measurements indicated that the local stress at the weld root was up to 25% lower than the nominal stress determined prior to testing, thus artificially improving fatigue performance. Welds of good quality and refined microstructure were found, however process related flaws on the top and bottom surface emphasise the need for optimisation of the tool material and welding parameters

    Protection of physically compact multiterminal DC power systems

    Get PDF
    The use of DC for primary power distribution has the potential to bring significant design, cost and efficiency benefits to microgrid, shipboard and aircraft applications. The integration of active converter technologies within these networks is a key enabler for these benefits to be realised, however their influence on an electrical network's fault response can lead to exceptionally demanding protection requirements. This represents a significant barrier to more widespread adoption of DC power distribution. The principle challenge within the field is to develop protection solutions which do not significantly detract from the advantages which DC networks offer. This objective leads the thesis to not only consider how the protection challenges may be overcome but also how this can be achieved in a manner which can benefit the overall design of a system, inclusive of various system design objectives. The thesis proposes that this objective can be achieved through the operation of network protection within the initial transient period following the occurrence of a fault. In seeking to achieve this aim, the work presented within this thesis makes a number of contributions. The thesis categorises converter type based on the components which influence their fault response and then presents an analysis of the natural fault response of compact multiterminal DC power distribution networks containing these converters. Key factors such as the peak magnitudes and formation times of fault current profiles are determined and quantified as a function of network parameters, enabling protection system operating requirements to be established. Secondary fault effects such as voltage transients are also identified and quantified to illustrate the impact of suboptimal protection system operation. The capabilities of different protection methods and technologies for achieving the proposed operating requirements are then analysed. Significant conclusions are: solid state breaking technologies are essential to achieving operating targets and severe limitations exist with the application of protection methods available within literature for this application. To overcome these shortfalls, novel fault detection approaches are proposed and analysed. These approaches enable fault detection time targets to be met as well as aid with the effective integration of future circuit breaking technologies

    AC/DC converter with DC fault suppression for aircraft +/- 270 VDC distribution systems

    Get PDF
    The increasing electrical demand in commercial and military aircraft justifies a growing need for higher voltage DC primary distribution systems. A DC system offers reduced power losses and space savings, which is of major importance for aircraft manufacturers. At present, challenges associated with DC systems include reliable fast acting short circuit protection. Solid State Contactors (SSC) have gained wide acceptance in traditional 28 VDC secondary systems for DC fault interruption. However, the reliable operation at higher operating voltages and currents requires further technology maturation. This paper examines a supporting method to SSC for more reliable fault mitigation by investigating bidirectional AC/DC converter topology with DC fault current blocking capability. Replacement of semiconductor switches with full bridge cells allows instant reversal of voltage polarities to limit rapid capacitor discharge and machine inductive currents. Demonstration of this capability is realized by tracking DC fault currents in time-domain simulations of a ±270 VDC converter dynamic model built in MATLAB-Simulink. Simulation results have shown that the modified power converter topology provides a fast response to DC faults and it can be considered as a back-up to SSCs in clearing faults in ±270 VDC distribution systems

    Electro-thermal analysis of power converter components in low-voltage DC microgrids for optimal protection system design

    Get PDF
    Bidirectional power converters are considered to be key elements in interfacing the low voltage dc microgrid with an ac grid. However to date there has been no clear procedure to determine the maximum permissible fault isolation periods of the power converter components against the dc faults. To tackle this problem, this paper presents an electro-thermal analysis of the main elements of a converter: ac inductors, dc capacitors and semiconductors. In doing this, the paper provides a methodology for quantifying fault protection requirements for power converter components in future dc microgrids. The analysis is performed through simulations during normal and fault conditions of a low voltage dc microgrid. The paper develops dynamic electro-thermal models of components based on the design and detailed specification from manufacturer datasheets. The simulations show the impact of different protection system operating speeds on the required converter rating for the studied conditions. This is then translated into actual cost of converter equipment. In this manner, the results can be used to determine the required fault protection operating requirements, coordinated with cost penalties for uprating the converter components
    corecore