16,389 research outputs found

    Driving extreme variability: The evolving corona and evidence for jet launching in Markarian 335

    Get PDF
    Variations in the X-ray emission from the narrow line Seyfert 1 galaxy, Markarian 335 (Mrk 335), are studied on both long and short timescales through observations made between 2006 and 2013 with XMM-Newton, Suzaku and NuSTAR. Changes in the geometry and energetics of the corona that give rise to this variability are inferred through measurements of the relativistically blurred reflection seen from the accretion disc. On long timescales, we find that during the high flux epochs the corona has expanded, covering the inner regions of the accretion disc out to a radius of 26(-7,+10)rg. The corona contracts to within 12rg and 5rg in the intermediate and low flux epochs, respectively. While the earlier high flux observation made in 2006 is consistent with a corona extending over the inner part of the accretion disc, a later high flux observation that year revealed that the X-ray source had become collimated into a vertically-extended jet-like corona and suggested relativistic motion of material upward. On short timescales, we find that an X-ray flare during a low flux epoch in 2013 corresponded to a reconfiguration from a slightly extended corona to one much more compact, within just 2~3rg of the black hole. There is evidence that during the flare itself, the spectrum softened and the corona became collimated and slightly extended vertically as if a jet-launching event was aborted. Understanding the evolution of the X-ray emitting corona may reveal the underlying mechanism by which the luminous X-ray sources in AGN are powered.Comment: 21 pages, 9 figures. Accepted for publication in MNRA

    Is HE 0436-4717 Anemic? A deep look at a bare Seyfert 1 galaxy

    Get PDF
    A multi-epoch, multi-instrument analysis of the Seyfert 1 galaxy HE 0436-4717 is conducted using optical to X-ray data from XMM-Newton and Swift (including the BAT). Fitting of the UV-to-X-ray spectral energy distribution shows little evidence of extinction and the X-ray spectral analysis does not confirm previous reports of deep absorption edges from OVIII. HE 0436-4717 is a "bare" Seyfert with negligible line-of-sight absorption making it ideal to study the central X-ray emitting region. Three scenarios were considered to describe the X-ray data: partial covering absorption, blurred reflection, and soft Comptonization. All three interpretations describe the 0.5-10.0 keV spectra well. Extrapolating the models to 100 keV results in poorer fits for the the partial covering model. When also considering the rapid variability during one of the XMM-Newton observations, the blurred reflection model appears to describe all the observations in the most self-consistent manner. If adopted, the blurred reflection model requires a very low iron abundance in HE 0436-4717. We consider the possibilities that this is an artifact of the fitting process, but it appears possible that it is intrinsic to the object.Comment: 7 tables, 11 figures, 16 pages; accepted for publication in MNRAS 17 Feb. 201

    Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles

    Get PDF
    To gain a better understanding of the inner disc region that comprises active galactic nuclei it is necessary to understand the pattern in which the disc is illuminated (the emissivity profile) by X-rays emitted from the continuum source above the black hole (corona). The differences in the emissivity profiles produced by various corona geometries are explored via general relativistic ray tracing simulations. Through the analysis of various parameters of the geometries simulated it is found that emissivity profiles produced by point source and extended geometries such as cylindrical slabs and spheroidal coronae placed on the accretion disc are distinguishable. Profiles produced by point source and conical geometries are not significantly different, requiring an analysis of reflection fraction to differentiate the two geometries. Beamed point and beamed conical sources are also simulated in an effort to model jet-like coronae, though the differences here are most evident in the reflection fraction. For a point source we determine an approximation for the measured reflection fraction with the source height and velocity. Simulating spectra from the emissivity profiles produced by the various geometries produce distinguishable differences. Overall spectral differences between the geometries do not exceed 15 per cent in the most extreme cases. It is found that emissivity profiles can be useful in distinguishing point source and extended geometries given high quality spectral data of extreme, bright sources over long exposure times. In combination with reflection fraction, timing, and spectral analysis we may use emissivity profiles to discern the geometry of the X-ray source.Comment: 15 pages, 12 figures. Accepted for publication in MNRA

    Caught in the act: Measuring the changes in the corona that cause the extreme variability of 1H 0707-495

    Get PDF
    The X-ray spectra of the narrow line Seyfert 1 galaxy, 1H 0707-495, obtained with XMM-Newton, from time periods of varying X-ray luminosity are analysed in the context of understanding the changes to the X-ray emitting corona that lead to the extreme variability seen in the X-ray emission from active galactic nuclei (AGN). The emissivity profile of the accretion disc, illuminated by the X-ray emitting corona, along with previous measurements of reverberation time lags are used to infer the spatial extent of the X-ray source. By fitting a twice-broken power law emissivity profile to the relativistically-broadened iron K fluorescence line, it is inferred that the X-ray emitting corona expands radially, over the plane of the accretion disc, by 25 to 30 per cent as the luminosity increases, contracting again as the luminosity decreases, while increases in the measured reverberation lag as the luminosity increases would require also variation in the vertical extent of the source above the disc. The spectrum of the X-ray continuum is found to soften as the total X-ray luminosity increases and we explore the variation in reflected flux as a function of directly-observed continuum flux. These three observations combined with simple, first-principles models constructed from ray tracing simulations of extended coron self-consistently portray an expanding corona whose average energy density decreases, but with a greater number of scattering particles as the luminosity of this extreme object increases.Comment: 12 pages, 4 figures. Accepted for publication in MNRA

    Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    Get PDF
    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature and flux of the blackbody component are found to follow the LT4L\propto T^{4} relation expected for simple thermal blackbody emission from a constant emitting area, indicating a physical origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    Get PDF
    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow line Seyfert 1 galaxy I Zwicky 1 (I Zw 1) taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0keV energy and continuum-dominated 1.0-4.0keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3e-4 to 1.2e-3Hz a lag of 160s is measured, but the lag shortens to (59 +/- 4)s above 1.2e-3Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.Comment: 18 pages, 11 figures. Accepted for publication in MNRA

    Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    Full text link
    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in nn-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as, the Gauss-Bonnet versions of the Bonnor-Vaidya(de Sitter/anti-de Sitter) solution, a global monopole and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics
    corecore