13,831 research outputs found

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    Double dynamical regime of confined water

    Full text link
    The Van Hove self correlation function of water confined in a silica pore is calculated from Molecular Dynamics trajectories upon supercooling. At long time in the α\alpha relaxation region we found that the behaviour of the real space time dependent correlators can be decomposed in a very slow, almost frozen, dynamics due to the bound water close to the substrate and a faster dynamics of the free water which resides far from the confining surface. For free water we confirm the evidences of an approach to a crossover mode coupling transition, previously found in Q space. In the short time region we found that the two dynamical regimes are overimposed and cannot be distinguished. This shows that the interplay between the slower and the faster dynamics emerges in going from early times to the α\alpha relaxation region, where a layer analysis of the dynamical properties can be performed.Comment: 6 pages with 9 figures. RevTeX. Accepted for pulbication in J. Phys. Cond. Mat

    In vitro aflatoxins recovery after changing buffer or protozoa concentrations in the rumen fermentation fluid

    Get PDF
    This study simulates in vitro the effects of (i) rumen acidity and (ii) change in rumen protozoa numbers on the recovery of aflatoxins (AFs). Two 24-h fermentation experiments were carried out using the same batch in vitro fermentation systems and substrate (dried corn meal) containing 11.42, 2.42, 7.65 and 1.70 µg/kg of AFB1, AFB2, AFG1 and AFG2 respectively. In Experiment 1, two buffer concentrations (normal salts dosage or lowered to 25%) were tested. Buffer reduction decreased gas production (730 vs. 1101 mL, p < 0.05), volatile fatty acids (VFA) and NH3 concentrations in the fermentation liquid (39.8 vs. 46.3 mmol/L, and 31.7 vs. 46.5 mg/dL respectively, p < 0.01). Recovery of all four AFs types was higher (p < 0.01) in the reduced buffer fermentation fluid, both as a percentage of total AF incubated (73.6% vs. 62.5%, 45.9% vs. 38.1%, 33.6% vs. 17.9% and 18.9% vs. 6.24% for AFB1, AFB2, AFG1 and AFG2 respectively) and as amounts relative to VFA production (163.4 vs. 123.5, 22.1 vs. 15.7, 48.8 vs. 22.5 and 6.16 vs. 1.86 ng/100 mmol of VFA, for AFB1, AFB2, AFG1 and AFG2 respectively). In Experiment 2, Stevia rebaudiana Bertoni extracts (S) or a Camphor essential oil (Cam) were added to fermenters and compared to the control (no additives, C). S and Cam addition resulted in a 25% reduction (p < 0.05) and a 15% increase (p < 0.05) in protozoa counts respectively, when compared to C. Both plant additives slightly reduced (p < 0.05) AFB1 recovery as a percentage of total AFB1 incubated (68.5% and 67.7% vs. 74.9% for S, Cam and C respectively). Recoveries of all other AFs were unaffected by the additives. In conclusion, the rumen in vitro AFB1 recovery (63%–75%) was higher than other AFs (3%–46%) and the acidic fermentation environment increased it. In our conditions, changes in protozoa numbers did not affect AFs recovery

    The Intrinsically X-ray Weak Quasar PHL 1811. I. X-ray Observations and Spectral Energy Distribution

    Get PDF
    This is the first of two papers reporting observations and analysis of the unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811, focusing on the X-ray properties and the spectral energy distribution. Two Chandra observations reveal a weak X-ray source with a steep spectrum. Variability by a factor of 4 between the two observations separated by 12 days suggest that the X-rays are not scattered emission. The XMM-Newton spectra are modelled in the 0.3--5 keV band by a steep power law with \Gamma = 2.3\pm 0.1, and the upper limit on intrinsic absorption is 8.7 x 10^{20} cm^{-2}. The spectral slopes are consistent with power law indices commonly observed in NLS1s, and it appears that we observe the central engine X-rays directly. Including two recent Swift ToO snapshots, a factor of ~5 variability was observed among the five X-ray observations reported here. In contrast, the UV photometry obtained by the XMM-Newton OM and Swift UVOT, and the HST spectrum reveal no significant UV variability. The \alpha_{ox} inferred from the Chandra and contemporaneous HST spectrum is -2.3 \pm 0.1, significantly steeper than observed from other quasars of the same optical luminosity. The steep, canonical X-ray spectra, lack of absorption, and significant X-ray variability lead us to conclude that PHL 1811 is intrinsically X-ray weak. We also discuss an accretion disk model, and the host galaxy of PHL 1811.Comment: 45 pages, 9 figures, accepted for publication in Ap

    On computations of angular momentum and its flux in numerical relativity

    Full text link
    The purpose of this note is to point out ambiguities that appear in the calculation of angular momentum and its radiated counterpart when some simple formulae are used to compute them. We illustrate, in two simple different examples, how incorrect results can be obtained with them. Additionally, we discuss the magnitude of possible errors in well known situations.Comment: 8 pages. Minor improvements . To appear in Class. Quantum Gra

    Supercooled confined water and the Mode Coupling crossover temperature

    Full text link
    We present a Molecular Dynamics study of the single particle dynamics of supercooled water confined in a silica pore. Two dynamical regimes are found: close to the hydrophilic substrate molecules are below the Mode Coupling crossover temperature, TCT_C, already at ambient temperature. The water closer to the center of the pore (free water) approaches upon supercooling TCT_C as predicted by Mode Coupling Theories. For free water the crossover temperature and crossover exponent γ\gamma are extracted from power-law fits to both the diffusion coefficient and the relaxation time of the late α\alpha region.Comment: To be published, Phys. Rev. Lett., 4 pages, 3 figures, revTeX, minor changes in the figures, references added, changes in the tex
    • …
    corecore