18,855 research outputs found

    Deficient Reasoning for Dark Matter in Galaxies

    Full text link
    Astronomers have been using the measured luminosity to estimate the {\em luminous mass} of stars, based on empirically established mass-to-light ratio which seems to be only applicable to a special class of stars---the main-sequence stars---with still considerable uncertainties. Another basic tool to determine the mass of a system of stars or galaxies comes from the study of their motion, as Newton demonstrated with his law of gravitation, which yields the {\em gravitational mass}. Because the luminous mass can at best only represent a portion of the gravitational mass, finding the luminous mass to be different or less than the gravitational mass should not be surprising. Using such an apparent discrepancy as a compelling evidence for the so-called dark matter, which has been believed to possess mysterious nonbaryonic properties and present a dominant amount in galaxies and the universe, seems to be too far a stretch when seriously examining the facts and uncertainties in the measurement techniques. In our opinion, a galaxy with star type distribution varying from its center to edge may have a mass-to-light ratio varying accordingly. With the thin-disk model computations based on measured rotation curves, we found that most galaxies have a typical mass density profile that peaks at the galactic center and decreases rapidly within ∌5\sim 5% of the cut-off radius, and then declines nearly exponentially toward the edge. The predicted mass density in the Galactic disk is reasonably within the reported range of that observed in interstellar medium. This leads us to believe that ordinary baryonic matter can be sufficient for supporting the observed galactic rotation curves; speculation of large amount of non-baryonic matter may be based on an ill-conceived discrepancy between gravitational mass and luminous mass which appears to be unjustified

    A Multiple Indicators Model for Volatility Using Intra-Daily Data

    Get PDF
    Many ways exist to measure and model financial asset volatility. In principle, as the frequency of the data increases, the quality of forecasts should improve. Yet, there is no consensus about a true' or best' measure of volatility. In this paper we propose to jointly consider absolute daily returns, daily high-low range and daily realized volatility to develop a forecasting model based on their conditional dynamics. As all are non-negative series, we develop a multiplicative error model that is consistent and asymptotically normal under a wide range of specifications for the error density function. The estimation results show significant interactions between the indicators. We also show that one-month-ahead forecasts match well (both in and out of sample) the market-based volatility measure provided by an average of implied volatilities of index options as measured by VIX.

    Double dynamical regime of confined water

    Full text link
    The Van Hove self correlation function of water confined in a silica pore is calculated from Molecular Dynamics trajectories upon supercooling. At long time in the α\alpha relaxation region we found that the behaviour of the real space time dependent correlators can be decomposed in a very slow, almost frozen, dynamics due to the bound water close to the substrate and a faster dynamics of the free water which resides far from the confining surface. For free water we confirm the evidences of an approach to a crossover mode coupling transition, previously found in Q space. In the short time region we found that the two dynamical regimes are overimposed and cannot be distinguished. This shows that the interplay between the slower and the faster dynamics emerges in going from early times to the α\alpha relaxation region, where a layer analysis of the dynamical properties can be performed.Comment: 6 pages with 9 figures. RevTeX. Accepted for pulbication in J. Phys. Cond. Mat

    Continuity properties of a factor of Markov chains

    Full text link
    Starting from a Markov chain with a finite alphabet, we consider the chain obtained when all but one symbol are undistinguishable for the practitioner. We study necessary and sufficient conditions for this chain to have continuous transition probabilities with respect to the past

    Vector Multiplicative Error Models: Representation and Inference

    Get PDF
    The Multiplicative Error Model introduced by Engle (2002) for positive valued processes is specified as the product of a (conditionally autoregressive) scale factor and an innovation process with positive support. In this paper we propose a multi-variate extension of such a model, by taking into consideration the possibility that the vector innovation process be contemporaneously correlated. The estimation procedure is hindered by the lack of probability density functions for multivariate positive valued random variables. We suggest the use of copulafunctions and of estimating equations to jointly estimate the parameters of the scale factors and of the correlations of the innovation processes. Empirical applications on volatility indicators are used to illustrate the gains over the equation by equation procedure.

    X-ray and Ultraviolet Properties of AGN in Nearby Dwarf Galaxies

    Full text link
    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line AGN candidates in nearby dwarf galaxies (z<0.055z<0.055). Including archival Chandra observations of three additional sources, our sample contains all ten galaxies from Reines et al. (2013) with both broad Hα\alpha emission and narrow-line AGN ratios (6 AGNs, 4 Composites), as well as one low-metallicity dwarf galaxy with broad Hα\alpha and narrow-line ratios characteristic of star formation. All eleven galaxies are detected in X-rays. Nuclear X-ray luminosities range from L0.5−7keV≈5×1039L_{0.5-7 \rm{keV}}\approx5\times10^{39} to 1×10421\times10^{42} ergs−1\rm{erg}\rm{s^{-1}}. In all cases except for the star forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGN and composite dwarf galaxies do indeed host actively accreting BHs. Using our estimated BH masses (which range from ∌7×104−1×106 M⊙\sim7\times10^{4}-1\times10^{6}~M_{\odot}), we find inferred Eddington fractions ranging from ∌0.1−50%\sim0.1-50\%, i.e. comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of ultraviolet to X-ray emission for these AGN, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e. αOX\alpha_{\rm OX} values an average of 0.36 lower than expected based on the relation between αOX\alpha_{\rm OX} and 2500A˚2500{\rm \AA} luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.Comment: 15 pages, 15 figures, 4 tables. Submitted to Ap
    • 

    corecore