1,338 research outputs found
Preserved neural dynamics across animals performing similar behaviour
Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour
Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling
The insulin-like growth factor Ea propeptide (IGF-1Ea) is a powerful enhancer of cardiac muscle growth and regeneration, also blocking age-related atrophy and beneficial in multiple skeletal muscle diseases. The therapeutic potential of IGF-1Ea compared with mature IGF-1 derives from its local action in the area of synthesis. We have developed an adeno-associated virus (AAV) vector for IGF-1Ea delivery to the heart to treat mice after myocardial infarction and examine the reparative effects of local IGF-1Ea production on left ventricular remodelling. A cardiotropic AAV9 vector carrying a cardiomyocyte-specific IGF-1Ea-luciferase bi-cistronic gene expression cassette (AAV9.IGF-1Ea) was administered intravenously to infarcted mice, 5 h after ischemia followed by reperfusion (I/R), as a model of myocardial infarction. Virally encoded IGF-1Ea in the heart improved global left ventricular function and remodelling, as measured by wall motion and thickness, 28 days after delivery, with higher viral titers yielding better improvement. The present study demonstrates that single intravenous AAV9-mediated IGF-1Ea Gene Therapy represents a tissue-targeted therapeutic approach to prevent the adverse remodelling after myocardial infarct
Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is associated with premature and accelerated atherosclerosis. Circulating progenitor cells (CPCs) are circulating bone-marrow derived cells that play an important role in the repair of vascular damage that underlies the development of atherosclerosis. The objective of this study was to determine the number and functionality of CPCs in patients with SLE. The study included 44 female SLE patients in an inactive stage of disease and 35 age-matched female controls. CPC numbers in the circulation were determined by FACS with monoclonals against CD14, CD34 and CD133. Peripheral blood-derived mononuclear cell (PBMNC) fractions were cultured in angiogenic medium. The endothelial-like phenotype was confirmed and the colony forming unit (CFU) capacity, migratory capacity and the potential to form clusters on Matrigel were determined. Expression of apoptosis inhibiting caspase 8L was analyzed in PBMNCs and CPCs by gene transcript and protein expression assays. The number of CD34–CD133 double-positive cells (P < 0.001) as well as the CFU capacity (P = 0.048) was reduced in SLE patients. Migratory activity on tumor necrosis factor-α tended to be reduced in patient CPCs (P = 0.08). Migration on vascular endothelial growth factor showed no significant differences, nor were differences observed in the potential to form clusters on Matrigel. The expression of caspase 8L was reduced at the transcriptional level (P = 0.049) and strongly increased at the protein level after culture (P = 0.003). We conclude that CPC numbers are reduced in SLE patients and functionality is partly impaired. We suggest these findings reflect increased susceptibility to apoptosis of CPCs from SLE patients
Event-based Asynchronous Sparse Convolutional Networks
Event cameras are bio-inspired sensors that respond to per-pixel brightness
changes in the form of asynchronous and sparse "events". Recently, pattern
recognition algorithms, such as learning-based methods, have made significant
progress with event cameras by converting events into synchronous dense,
image-like representations and applying traditional machine learning methods
developed for standard cameras. However, these approaches discard the spatial
and temporal sparsity inherent in event data at the cost of higher
computational complexity and latency. In this work, we present a general
framework for converting models trained on synchronous image-like event
representations into asynchronous models with identical output, thus directly
leveraging the intrinsic asynchronous and sparse nature of the event data. We
show both theoretically and experimentally that this drastically reduces the
computational complexity and latency of high-capacity, synchronous neural
networks without sacrificing accuracy. In addition, our framework has several
desirable characteristics: (i) it exploits spatio-temporal sparsity of events
explicitly, (ii) it is agnostic to the event representation, network
architecture, and task, and (iii) it does not require any train-time change,
since it is compatible with the standard neural networks' training process. We
thoroughly validate the proposed framework on two computer vision tasks: object
detection and object recognition. In these tasks, we reduce the computational
complexity up to 20 times with respect to high-latency neural networks. At the
same time, we outperform state-of-the-art asynchronous approaches up to 24% in
prediction accuracy
Recovery of early meteorological records from Extremadura region (SW Iberia): The ''CliPastExtrem'' (v1.0) database
In this work, we provide instrumental meteorological data recovered for the Extremadura region (interior SW Iberia), from 1826 to mid-20th century. Meteorological variables such as air temperature, atmospheric pressure, precipitation, wind direction and humidity, among others, were retrieved. In total, more than 750 000 instrumental data in 157 meteorological series belonging to 131 different locations throughout Extremadura were rescued. It must be noted that daily resolution data constitutes 80% of the database. This great effort of digitization and data collection has been carried out with the aim of contributing to a significant expansion of the length of the databases with meteorological information in this region. Therefore, this database will provide a better understanding of climate variability, trends and extreme events of the Extremadura region
The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input
The pathophysiology of essential tremor (ET), the most common movement disorder, is not fully understood. We investigated which factors determine the variability in the phase difference between neural drives to antagonist muscles, a long-standing observation yet unexplained. We used a computational model to simulate the effects of different levels of voluntary and tremulous synaptic input to antagonistic motoneuron pools on the tremor. We compared these simulations to data from 11 human ET patients. In both analyses, the neural drive to muscle was represented as the pooled spike trains of several motor units, which provides an accurate representation of the common synaptic input to motoneurons. The simulations showed that, for each voluntary input level, the phase difference between neural drives to antagonist muscles is determined by the relative strength of the supraspinal tremor input to the motoneuron pools. In addition, when the supraspinal tremor input to one muscle was weak or absent, Ia afferents provided significant common tremor input due to passive stretch. The simulations predicted that without a voluntary drive (rest tremor) the neural drives would be more likely in phase, while a concurrent voluntary input (postural tremor) would lead more frequently to an out-of-phase pattern. The experimental results matched these predictions, showing a significant change in phase difference between postural and rest tremor. They also indicated that the common tremor input is always shared by the antagonistic motoneuron pools, in agreement with the simulations. Our results highlight that the interplay between supraspinal input and spinal afferents is relevant for tremor generation
Co-prescription of medication for bipolar disorder and diabetes mellitus : a nationwide population based study with focus on gender differences
BackgroundStudies have shown a correlation between bipolar disorder and diabetes mellitus. It is unclear if this correlation is a part of common pathophysiological pathways, or if medication for bipolar disorder has negative effects on blood sugar regulation.MethodsThe Norwegian prescription database was analyzed. Prescriptions for lithium, lamotrigine, carbamazepine and valproate were used as proxies for bipolar disorder. Prescriptions for insulin and oral anti-diabetic agents were used as proxies for diabetes mellitus. We explored the association between medication for bipolar disorder and diabetes medication by logistic regressionResultsWe found a strong association between concomitant use of medication to treat diabetes mellitus and mood stabilizers for the treatment of bipolar disorder. Females had a 30% higher risk compared to men of being treated for both disorders. Persons using oral anti-diabetic agents had higher odds of receiving valproate than either lithium or lamotrigine. Use of insulin as monotherapy seemed to have lower odds than oral anti-diabetic agents of co-prescription of mood stabilizers, compared to the general population.ConclusionsThis study showed a strong association between the use of mood stabilizers and anti-diabetic agents. The association was stronger among women than men
Epigenetics modifications and Subclinical Atherosclerosis in Obstructive Sleep Apnea: The EPIOSA study.
Background
Obstructive sleep apnea (OSA) is associated with increased risk for cardiovascular morbidity and mortality. Epidemiological and animal models studies generate hypotheses for innovative strategies in OSA management by interferig intermediates mechanisms associated with cardiovascular complications. We have thus initiated the Epigenetics modification in Obstructive Sleep Apnea (EPIOSA) study (ClinicalTrials.gov identifier: NCT02131610).
Methods/design
EPIOSA is a prospective cohort study aiming to recruit 350 participants of caucasian ethnicity and free of other chronic or inflammatory diseases: 300 patients with prevalent OSA and 50 non-OSA subjects. All of them will be follow-up for at least 5 years. Recruitment and study visits are performed in single University-based sleep clinic using standard operating procedures. At baseline and at each one year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized questionnaire and physical examination to determine incident comorbidities and health resources utilization, with a primary focus on cardiovascular events. Confirmatory outcomes information is requested from patient records and the regional Department of Health Services. Every year, OSA status will be assessed by full sleep study and blood samples will be obtained for immediate standard biochemistry, hematology, inflammatory cytokines and cytometry analysis. For biobanking, aliquots of serum, plasma, urine, mRNA and DNA are also obtained. Bilateral carotid echography will be performed to assess subclinical atherosclerosis and atherosclerosis progression. OSA patients are treated according with national guidelines.
Discussion
EPIOSA will enable the prospective evaluation of inflammatory and epigenetics mechanism involved in cardiovascular complication of treated and non-treated patients with OSA compared with non OSA subjects
Rectus sheath haematoma or leaking aortic aneurysm - a diagnostic challenge: a case report
© 2009 Shaw et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Personalised profiling to identify clinically relevant changes in tremor due to multiple sclerosis
Background: There is growing interest in sensor-based assessment of upper limb tremor in multiple sclerosis and other movement disorders. However, previously such assessments have not been found to offer any improvement over conventional clinical observation in identifying clinically relevant changes in an individual's tremor symptoms, due to poor test-retest repeatability. Method: We hypothesised that this barrier could be overcome by constructing a tremor change metric that is customised to each individual's tremor characteristics, such that random variability can be distinguished from clinically relevant changes in symptoms. In a cohort of 24 people with tremor due to multiple sclerosis, the newly proposed metrics were compared against conventional clinical and sensor-based metrics. Each metric was evaluated based on Spearman rank correlation with two reference metrics extracted from the Fahn-Tolosa-Marin Tremor Rating Scale: a task-based measure of functional disability (FTMTRS B) and the subject's self-assessment of the impact of tremor on their activities of daily living (FTMTRS C). Results: Unlike the conventional sensor-based and clinical metrics, the newly proposed ’change in scale’ metrics presented statistically significant correlations with changes in self-assessed impact of tremor (max R2>0.5,p< 0.05 after correction for false discovery rate control). They also outperformed all other metrics in terms of correlations with changes in task-based functional performance (R2=0.25 vs. R2=0.15 for conventional clinical observation, both p< 0.05).Conclusions: The proposed metrics achieve an elusive goal of sensor-based tremor assessment: improving on conventional visual observation in terms of sensitivity to change. Further refinement and evaluation of the proposed techniques is required, but our core findings imply that the main barrier to translational impact for this application can be overcome. Sensor-based tremor assessments may improve personalised treatment selection and the efficiency of clinical trials for new treatments by enabling greater standardisation and sensitivity to clinically relevant changes in symptoms
- …