471 research outputs found

    Enhanced dissipation and Taylor dispersion in higher-dimensional parallel shear flows

    Get PDF
    We consider the evolution of a passive scalar advected by a parallel shear flow in an infinite cylinder with bounded cross section, in arbitrary space dimension. The essential parameters of the problem are the molecular diffusivity ν\nu, which is assumed to be small, and the wave number kk in the streamwise direction, which can take arbitrary values. Under generic assumptions on the shear velocity, we obtain optimal decay estimates for large times, both in the enhanced dissipation regime νk\nu \ll |k| and in the Taylor dispersion regime kν|k| \ll \nu. Our results can be deduced from resolvent estimates using a quantitative version of the Gearhart-Pr\"uss theorem, or can be established more directly via the hypocoercivity method. Both approaches are implemented in the present example, and their relative efficiency is compared

    Three-dimensional stability of Burgers vortices

    Full text link
    Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re=Γ/νRe = \Gamma/\nu, where Γ\Gamma is the total circulation of the vortex and ν\nu is the kinematic viscosity. The purpose of this paper is to show that Burgers vortex is asymptotically stable with respect to general three-dimensional perturbations, for all values of the Reynolds number. This definitive result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the crucial observation that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developped in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if ReRe is large, a phenomenon that was indeed observed in numerical simulations.Comment: 31 pages, no figur

    Global exponential convergence to variational traveling waves in cylinders

    Full text link
    We prove, under generic assumptions, that the special variational traveling wave that minimizes the exponentially weighted Ginzburg-Landau functional associated with scalar reaction-diffusion equations in infinite cylinders is the long-time attractor for the solutions of the initial value problems with front-like initial data. The convergence to this traveling wave is exponentially fast. The obtained result is mainly a consequence of the gradient flow structure of the considered equation in the exponentially weighted spaces and does not depend on the precise details of the problem. It strengthens our earlier generic propagation and selection result for "pushed" fronts.Comment: 23 page

    Analysis of enhanced diffusion in Taylor dispersion via a model problem

    Full text link
    We consider a simple model of the evolution of the concentration of a tracer, subject to a background shear flow by a fluid with viscosity ν1\nu \ll 1 in an infinite channel. Taylor observed in the 1950's that, in such a setting, the tracer diffuses at a rate proportional to 1/ν1/\nu, rather than the expected rate proportional to ν\nu. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold theory. More precisely, we show that, while the high modes of the concentration decay exponentially, the low modes decay algebraically, but at an enhanced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1/ν1/\nu

    Interaction of vortices in viscous planar flows

    Full text link
    We consider the inviscid limit for the two-dimensional incompressible Navier-Stokes equation in the particular case where the initial flow is a finite collection of point vortices. We suppose that the initial positions and the circulations of the vortices do not depend on the viscosity parameter \nu, and we choose a time T > 0 such that the Helmholtz-Kirchhoff point vortex system is well-posed on the interval [0,T]. Under these assumptions, we prove that the solution of the Navier-Stokes equation converges, as \nu -> 0, to a superposition of Lamb-Oseen vortices whose centers evolve according to a viscous regularization of the point vortex system. Convergence holds uniformly in time, in a strong topology which allows to give an accurate description of the asymptotic profile of each individual vortex. In particular, we compute to leading order the deformations of the vortices due to mutual interactions. This allows to estimate the self-interactions, which play an important role in the convergence proof.Comment: 39 pages, 1 figur

    Fine properties of self-similar solutions of the Navier-Stokes equations

    Full text link
    We study the solutions of the nonstationary incompressible Navier--Stokes equations in Rd\R^d, d2d\ge2, of self-similar form u(x,t)=1tU(xt)u(x,t)=\frac{1}{\sqrt t}U\bigl(\frac{x}{\sqrt t}\bigr), obtained from small and homogeneous initial data a(x)a(x). We construct an explicit asymptotic formula relating the self-similar profile U(x)U(x) of the velocity field to its corresponding initial datum a(x)a(x)

    Phase Slips and the Eckhaus Instability

    Full text link
    We consider the Ginzburg-Landau equation, tu=x2u+uuu2 \partial_t u= \partial_x^2 u + u - u|u|^2 , with complex amplitude u(x,t)u(x,t). We first analyze the phenomenon of phase slips as a consequence of the {\it local} shape of uu. We next prove a {\it global} theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped with these results, we proceed to prove the corresponding phenomena for the fourth order Swift-Hohenberg equation, of which the Ginzburg-Landau equation is the amplitude approximation. This sheds light on how one should deal with local and global aspects of phase slips for this and many other similar systems.Comment: 22 pages, Postscript, A

    Orbital stability of periodic waves for the nonlinear Schroedinger equation

    Full text link
    The nonlinear Schroedinger equation has several families of quasi-periodic travelling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the same period and the same Floquet exponent. This generalizes a previous work where only small amplitude solutions were considered. A similar result is obtained in the focusing case, under a non-degeneracy condition which can be checked numerically. The proof relies on the general approach to orbital stability as developed by Grillakis, Shatah, and Strauss, and requires a detailed analysis of the Hamiltonian system satisfied by the wave profile.Comment: 34 pages, 7 figure

    Orbital stability: analysis meets geometry

    Get PDF
    We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE's, such as solitons, standing and plane waves for the nonlinear Schr{\"o}dinger equation, for the wave equation, and for the Manakov system

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters ϵ\epsilon and δ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System
    corecore