91 research outputs found
Representaciones, determinantes sociales y prácticas en la prevención y el tratamiento de las patologías orales
77 p.El estudio de las representaciones sociales de salud oral en conjunto a los determinantes sociales de la salud y prácticas, permite entregar sustentabilidad cultural a los contenidos, modalidades de promoción y prevención en salud oral, favoreciendo así el acceso a la atención, disminuyendo consecuentemente las brechas de equidad. El objetivo general es conocer las representaciones e influencia de los determinantes sociales en las prácticas de autocuidado, en prevención y tratamiento de las patologías orales, desde la visión de las/los pacientes. El diseño cualitativo descriptivo del estudio consideró una estrategia metodológica basada en el método narrativo y en la teoría fundamentada, mediante entrevistas semiestructuradas, a una muestra intencionada de 48 pacientes de programas odontológicos de la red de atención primaria de los CESFAM de Rauco, San Javier y Sarmiento de la VII región. El trabajo de campo se conformó por la fase exploratoria, saturación empírica y verificación. El análisis se realizó mediante el programa Nvivo10. Las representaciones de salud y enfermedad en la población de estudio carecen de conceptos biomédicos relacionados a la función masticatoria y preservación dentaria, otorgando mayor relevancia a lo estético, en un contexto de conocimientos orales limitados desde la perspectiva de los pacientes. Al comparar prevención con tratamiento de las patologías orales, en este último se encontró mayor influencia de determinantes sociales de la salud actuando como barrera, el más destacado es el factor psicosocial. Los resultados permiten reafirmar la relevancia de valorar el enfoque psicosocial, tanto en promoción, prevención y tratamiento de las patologías orales. Palabras claves: Prevención primaria, Barreras de acceso a los servicios de salud, Automedicación, teoría fundamentada, salud bucal
Understanding the Degradation of Core-Shell Nanogels Using Asymmetrical Flow Field Flow Fractionation
Nanogels are candidates for biomedical applications, and core-shell nanogels offer the potential to tune thermoresponsive behaviour with the capacity for extensive degradation. These properties were achieved by the combination of a core of poly(N-isopropylmethacrylamide) and a shell of poly(N-isopropylacrylamide), both crosslinked with the degradable crosslinker N,N'-bis(acryloyl)cystamine. In this work, the degradation behaviour of these nanogels was characterised using asymmetric flow field flow fractionation coupled with multi-angle and dynamic light scattering. By monitoring the degradation products of the nanogels in real-time, it was possible to identify three distinct stages of degradation: nanogel swelling, nanogel fragmentation, and nanogel fragment degradation. The results indicate that the core-shell nanogels degrade slower than their non-core-shell counterparts, possibly due to a higher degree of self-crosslinking reactions occurring in the shell. The majority of the degradation products had molecule weights below 10 kDa, which suggests that they may be cleared through the kidneys. This study provides important insights into the design and characterisation of degradable nanogels for biomedical applications, highlighting the need for accurate characterisation techniques to measure the potential biological impact of nanogel degradation products
Ronapreve (REGN-CoV; casirivimab and imdevimab) reduces the viral burden and alters the pulmonary response to the SARS-CoV 2 Delta variant (B.1.617.2) in K18-hACE2 mice using an experimental design reflective of a treatment use case
Background: Ronapreve demonstrated clinical application in post-exposure prophylaxis, mild/moderate disease and in the treatment of seronegative patients with severe COVID19 prior to the emergence of the Omicron variant in late 2021. Numerous reports have described loss of in vitro neutralisation activity of Ronapreve and other monoclonal antibodies for BA.1 Omicron and subsequent sub-lineages of the Omicron variant. With some exceptions, global policy makers have recommended against the use of existing monoclonal antibodies in COVID19. Gaps in knowledge regarding the mechanism of action of monoclonal antibodies are noted, and further preclinical study will help understand positioning of new monoclonal antibodies under development. Objectives: The purpose of this study was to investigate the impact of Ronapreve on compartmental viral replication as a paradigm for a monoclonal antibody combination. The study also sought to confirm absence of in vivo activity against BA.1 Omicron (B.1.1.529) relative to the Delta (B.1.617.2) variant. Methods: Virological efficacy of Ronapreve was assessed in K18-hACE2 mice inoculated with either the SARS-CoV-2 Delta or Omicron variants. Viral replication in tissues was quantified using qRT-PCR to measure sub-genomic viral RNA to the E gene (sgE) as a proxy. A histological examination in combination with staining for viral antigen served to determine viral spread and associated damage. Results: Ronapreve reduced sub-genomic viral RNA levels in lung and nasal turbinate, 4 and 6 days post infection, for the Delta variant but not the Omicron variant of SARS-CoV-2 at doses 2-fold higher than those shown to be active against previous variants of the virus. It also appeared to block brain infection which is seen with high frequency in K18-hACE2 mice after Delta variant infection. At day 6, the inflammatory response to lung infection with the Delta variant was altered to a mild multifocal granulomatous inflammation in which the virus appeared to be confined. A similar tendency was also observed in Omicron infected, Ronapreve-treated animals. Conclusions: The current study provides evidence of an altered tissue response to the SARS-CoV-2 after treatment with a monoclonal antibody combination that retains neutralization activity. These data also demonstrate that experimental designs that reflect the treatment use case are achievable in animal models for monoclonal antibodies deployed against susceptible variants. Extreme caution should be taken when interpreting prophylactic experimental designs when assessing plausibility of monoclonal antibodies for treatment use cases
Chemoprophylactic Assessment of Combined Intranasal SARS-CoV-2 Polymerase and Exonuclease Inhibition in Syrian Golden Hamsters
Pibrentasvir (PIB) has been demonstrated to block exonuclease activity of the SARS-CoV-2 polymerase, protecting favipiravir (FVP) and remdesivir (RDV) from post-incorporation excision and eliciting antiviral synergy in vitro. The present study investigated the chemoprophylactic efficacy of PIB, FVP, RDV, FVP with PIB, or RDV with PIB dosed intranasally twice a day, using a Syrian golden hamster contact transmission model. Compared to the saline control, viral RNA levels were significantly lower in throat swabs in FVP (day 7), RDV (day 3, 5, 7), and RDV+PIB (day 3, 5) treatment groups. Similarly, findings were evident for nasal turbinate after PIB and RDV treatment, and lungs after PIB, FVP, and FVP+PIB treatment at day 7. Lung viral RNA levels after RDV and RDV+PIB treatment were only detectable in two animals per group, but the overall difference was not statistically significant. In situ examination of the lungs confirmed SARS-CoV-2 infection in all animals, except for one in each of the RDV and RDV+PIB treatment groups, which tested negative in all virus detection approaches. Overall, prevention of transmission was observed in most animals treated with RDV, while other agents reduced the viral load following contact transmission. No benefit of combining FVP or RDV with PIB was observed
Evaluation of Nafamostat as Chemoprophylaxis for SARS-CoV-2 Infection in Hamsters
The successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention that is implementable alongside vaccination programmes. Nafamostat is a serine protease inhibitor that inhibits SARS-CoV-2 entry in vitro, but it has not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and has an extremely short plasma half-life. This study sought to determine whether intranasal dosing of nafamostat at 5 mg/kg twice daily was able to prevent the airborne transmission of SARS-CoV-2 from infected to uninfected Syrian Golden hamsters. SARS-CoV-2 RNA was detectable in the throat swabs of the water-treated control group 4 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, throat swabs from the intranasal nafamostat-treated hamsters remained SARS-CoV-2 RNA negative for the full 4 days of cohabitation. Significantly lower SARS-CoV-2 RNA concentrations were seen in the nasal turbinates of the nafamostat-treated group compared to the control (p = 0.001). A plaque assay quantified a significantly lower concentration of infectious SARS-CoV-2 in the lungs of the nafamostat-treated group compared to the control (p = 0.035). When taken collectively with the pathological changes observed in the lungs and nasal mucosa, these data are strongly supportive of the utility of intranasally delivered nafamostat for the prevention of SARS-CoV-2 infection
Chemoprophylactic Assessment of Combined Intranasal SARS-CoV-2 Polymerase and Exonuclease Inhibition in Syrian Golden Hamsters.
Pibrentasvir (PIB) has been demonstrated to block exonuclease activity of the SARS-CoV-2 polymerase, protecting favipiravir (FVP) and remdesivir (RDV) from post-incorporation excision and eliciting antiviral synergy in vitro. The present study investigated the chemoprophylactic efficacy of PIB, FVP, RDV, FVP with PIB, or RDV with PIB dosed intranasally twice a day, using a Syrian golden hamster contact transmission model. Compared to the saline control, viral RNA levels were significantly lower in throat swabs in FVP (day 7), RDV (day 3, 5, 7), and RDV+PIB (day 3, 5) treatment groups. Similarly, findings were evident for nasal turbinate after PIB and RDV treatment, and lungs after PIB, FVP, and FVP+PIB treatment at day 7. Lung viral RNA levels after RDV and RDV+PIB treatment were only detectable in two animals per group, but the overall difference was not statistically significant. In situ examination of the lungs confirmed SARS-CoV-2 infection in all animals, except for one in each of the RDV and RDV+PIB treatment groups, which tested negative in all virus detection approaches. Overall, prevention of transmission was observed in most animals treated with RDV, while other agents reduced the viral load following contact transmission. No benefit of combining FVP or RDV with PIB was observed
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis).
Time period: Tree-inventory plots established between 1934 and 2019.
Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm.
Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield.
Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes.
Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests.
Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
- …