45 research outputs found
Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes
Type 2 diabetes (T2D) impacts multiple organ systems including the circulatory, renal, nervous and musculoskeletal systems. In collagen-based tissues, one mechanism that may be responsible for detrimental mechanical impacts of T2D is the formation of advanced glycation end products (AGEs) leading to increased collagen stiffness and decreased toughness, resulting in brittle tissue behavior. The purpose of this study was to investigate tendon mechanical properties from normal and diabetic rats at two distinct length scales, testing the hypothesis that increased stiffness and strength and decreased toughness at the fiber level would be associated with alterations in nanoscale morphology and mechanics. Individual fascicles from female Zucker diabetic Sprague-Dawley (ZDSD) rats had no differences in fascicle-level mechanical properties but had increased material-level strength and stiffness versus control rats (CD). At the nanoscale, collagen fibril D-spacing was shifted towards higher spacing values in diabetic ZDSD fibrils. The distribution of nanoscale modulus values was also shifted to higher values. Material-level strength and stiffness from whole fiber tests were increased in ZDSD tails. Correlations between nanoscale and microscale properties indicate a direct positive relationship between the two length scales, most notably in the relationship between nanoscale and microscale modulus. These findings indicate that diabetes-induced changes in material strength and modulus were driven by alterations at the nanoscale
Raloxifene Prevents Skeletal Fragility in Adult Female Zucker Diabetic Sprague-Dawley Rats
This project was funded by a National Institutes of Health grant (AR047838) to DBB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Reference-Point Indentation Correlates with Bone Toughness Assessed Using Whole-Bone Traditional Mechanical Testing
Traditional bone mechanical testing techniques require excised bone and destructive sample preparation. Recently, a cyclic-microindentation technique, reference-point indentation (RPI), was described that allows bone to be tested in a clinical setting, permitting the analysis of changes to bone material properties over time. Because this is a new technique, it has not been clear how the measurements generated by RPI are related to the material properties of bone measured by standard techniques. In this paper, we describe our experience with the RPI technique, and correlate the results obtained by RPI with those of traditional mechanical testing, namely 3-point bending and axial compression. Using different animal models, we report that apparent bone material toughness obtained from 3-point bending and axial compression is inversely correlated with the indentation distance increase (IDI) obtained from RPI with r2 values ranging from 0.50 to 0.57. We also show that conditions or treatments previously shown to cause differences in toughness, including diabetes and bisphosphonate treatment, had significantly different IDI values compared to controls. Collectively these results provide a starting point for understanding how RPI relates to traditional mechanical testing results
Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats
Diabetes detrimentally affects the musculoskeletal system by stiffening the collagen matrix due to increased advanced glycation end products (AGEs). In this study, tibiae and tendon from Zucker diabetic Sprague–Dawley (ZDSD) rats were compared to Sprague–Dawley derived controls (CD) using Atomic Force Microscopy. ZDSD and CD tibiae were compared using Raman Spectroscopy and Reference Point Indentation (RPI). ZDSD bone had a significantly different distribution of collagen D-spacing than CD (p = 0.015; ZDSD n = 294 fibrils; CD n = 274 fibrils) which was more variable and shifted to higher values. This shift between ZDSD and CD D-spacing distribution was more pronounced in tendon (p < 0.001; ZDSD n = 350; CD n = 371). Raman revealed significant increases in measures of bone matrix mineralization in ZDSD (PO43 − ν1/Amide I p = 0.008; PO43 − ν1/CH2 wag p = 0.047; n = 5 per group) despite lower bone mineral density (aBMD) and ash fraction indicating diabetes may preferentially reduce the Raman signature of collagen. Decreased indentation distance increase (p = 0.010) and creep indentation distance (p = 0.040) measured by RPI (n = 9 per group) in ZDSD rats suggest a matrix more resistant to indentation under the high stresses associated with RPI at this length scale. There were significant correlations between Raman and RPI measurements in the ZDSD population (n = 18 locations) but not the CD population (n = 16 locations) indicating that while RPI is relatively unaffected by biological noise, it is sensitive to disease-induced compositional changes. In conclusion, diabetes in the ZDSD rat causes changes to the nanoscale morphology of collagen that result in compositional and mechanical effects in bone at the microscale
Elevated Mechanical Loading When Young Provides Lifelong Benefits to Cortical Bone Properties in Female Rats Independent of a Surgically Induced Menopause
Exercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young. Animals had their right forearm extrinsically loaded 3 d/wk between 4 and 10 weeks of age using the forearm axial compression loading model. Left forearms were internal controls and not loaded. Animals were subsequently detrained (restricted to cage activities) for 94 weeks (until age 2 years), with ovariectomy (OVX) or sham-OVX surgery being performed at 24 weeks of age. Loading enhanced midshaft ulna cortical bone mass, structure, and estimated strength. These benefits persisted lifelong and contributed to loaded ulnas having greater strength after detraining. Loading also had effects on cortical bone quality. The benefits of loading when young were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone mass, structure, and estimated strength at early postsurgery time points (up to age 58 weeks) and bone quality measures. These data indicate skeletal loading when young had lifelong benefits on cortical bone properties that persisted independent of a surgically induced menopause. This suggests that skeletal loading associated with exercise when young may provide lifelong antifracture benefits by priming the skeleton to offset the cortical bone changes associated with aging and menopause
A novel approach to evaluate the effect of medicaments used in endodontic regeneration on root canal surface indentation
Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIObjectives: To investigate the capability of a novel reference point indentation apparatus to test the indentation
properties of root canal surface dentine treated with three intracanal medicaments used in endodontic regeneration.
Materials and Methods: Immature human premolars were selected (n=22). Four specimens were obtained from
each root and randomly assigned to three treatment groups and a control group. Each specimen was exposed to one
of three treatment pastes (triple antibiotic (TAP), double antibiotic (DAP), or calcium hydroxide [Ca(OH)2] or
neutral de-ionized water (control) for one or four weeks. After each time-interval, the indentation properties of the
root canal dentine surfaces were measured using a BioDent reference point indenter. Two-way ANOVA and
Fisher’s Protected Least Significant Differences were used for statistical analyses.
Results: Significant differences in indentation parameters and estimated hardness between all groups at both time
points were found. TAP treated dentine had the highest significant indentation parameters, followed by DAP treated
dentine, untreated control dentine and Ca(OH)2 treated dentine, respectively. Furthermore, TAP treated dentine had
the lowest significant estimated hardness, followed by DAP treated dentine, untreated control dentine and Ca(OH)2
treated dentine, respectively.
Conclusion: BioDent reference point indenter was able to detect significant differences in indentation properties of
root canal dentine treated with various medicaments.
Clinical Relevance: The use of a reference point indenter is a promising approach to characterize the indentation
properties of root canal surfaces without any surface modification. This might provide an in vitro mechanical
measurement that is more representative of the actual clinical situation
In vivo reference point indentation reveals positive effects of raloxifene on mechanical properties following six months of treatment in skeletally mature beagle dogs.
Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIRaloxifene treatment has been shown previously to positively affect bone mechanical properties following one year of treatment in skeletally mature dogs. Reference point indentation (RPI) can
be used for in vivo assessment of mechanical properties and has been shown to produce values that are highly correlated with properties derived from traditional mechanical testing. The goal of this study was to use RPI to determine if raloxifene-induced alterations in mechanical properties occurred after 6 months of treatment. Twelve skeletally mature female beagle dogs were treated for 6 months with oral doses of saline vehicle (VEH, 1 ml/kg/day) or a clinically relevant dose of raloxifene (RAL, 0.5 mg/kg/day). At six months, all animals underwent in vivo
RPI (10 N force, 10 cycles) of the anterior tibial midshaft. RPI data were analyzed using a custom MATLAB program, designed to provide cycle-by-cycle data from the RPI test and validated against the manufacturer-provided software. Indentation distance increase (IDI), a
parameter that is inversely related to bone toughness, was significantly lower in RAL-treated animals compared to VEH (-16.5%) suggesting increased bone toughness. Energy absorption within the first cycle was significantly lower with RAL compared to VEH (-21%). These data
build on previous work that has documented positive effects of raloxifene on material properties by showing that these changes exist after 6 months
Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties
Authors' accepted manuscript.
Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIRaloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (-OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.The authors would like to thank Dr. Paul K. Hansma (Department of Physics, University of California, Santa Barbara), for suggesting the soaking technique and Dr. John Okasinski, Advanced Photon Source, for helping collect the WAXS data. Raloxifene was kindly provided by Eli Lilly (Indianapolis, IN, USA) under a Material Transfer Agreement to D.B.B. Eli Lilly was not involved in the study design, analyses or interpretation of the results. We are grateful to Dr. Susan J. Gunst for sharing dog tissue. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported by NIH grants to D.B.B. and M.R.A
Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats
Diabetes detrimentally affects the musculoskeletal system by stiffening the collagen matrix due to increased advanced glycation end products (AGEs). In this study, tibiae and tendon from Zucker diabetic Sprague–Dawley (ZDSD) rats were compared to Sprague–Dawley derived controls (CD) using Atomic Force Microscopy. ZDSD and CD tibiae were compared using Raman Spectroscopy and Reference Point Indentation (RPI). ZDSD bone had a significantly different distribution of collagen D-spacing than CD (p = 0.015; ZDSD n = 294 fibrils; CD n = 274 fibrils) which was more variable and shifted to higher values. This shift between ZDSD and CD D-spacing distribution was more pronounced in tendon (p < 0.001; ZDSD n = 350; CD n = 371). Raman revealed significant increases in measures of bone matrix mineralization in ZDSD (PO43 − ν1/Amide I p = 0.008; PO43 − ν1/CH2 wag p = 0.047; n = 5 per group) despite lower bone mineral density (aBMD) and ash fraction indicating diabetes may preferentially reduce the Raman signature of collagen. Decreased indentation distance increase (p = 0.010) and creep indentation distance (p = 0.040) measured by RPI (n = 9 per group) in ZDSD rats suggest a matrix more resistant to indentation under the high stresses associated with RPI at this length scale. There were significant correlations between Raman and RPI measurements in the ZDSD population (n = 18 locations) but not the CD population (n = 16 locations) indicating that while RPI is relatively unaffected by biological noise, it is sensitive to disease-induced compositional changes. In conclusion, diabetes in the ZDSD rat causes changes to the nanoscale morphology of collagen that result in compositional and mechanical effects in bone at the microscale
Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes
Type 2 diabetes (T2D) impacts multiple organ systems including the circulatory, renal, nervous and musculoskeletal systems. In collagen-based tissues, one mechanism that may be responsible for detrimental mechanical impacts of T2D is the formation of advanced glycation end products (AGEs) leading to increased collagen stiffness and decreased toughness, resulting in brittle tissue behavior. The purpose of this study was to investigate tendon mechanical properties from normal and diabetic rats at two distinct length scales, testing the hypothesis that increased stiffness and strength and decreased toughness at the fiber level would be associated with alterations in nanoscale morphology and mechanics. Individual fascicles from female Zucker diabetic Sprague-Dawley (ZDSD) rats had no differences in fascicle-level mechanical properties but had increased material-level strength and stiffness versus control rats (CD). At the nanoscale, collagen fibril D-spacing was shifted towards higher spacing values in diabetic ZDSD fibrils. The distribution of nanoscale modulus values was also shifted to higher values. Material-level strength and stiffness from whole fiber tests were increased in ZDSD tails. Correlations between nanoscale and microscale properties indicate a direct positive relationship between the two length scales, most notably in the relationship between nanoscale and microscale modulus. These findings indicate that diabetes-induced changes in material strength and modulus were driven by alterations at the nanoscale