408 research outputs found
Surface roughening during plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates.
The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface
Nanoparticle deposition in hydrogenated amorphous silicon films during rf plasma deposition
Particles of 2–14 nm diameter, representing 10(– 4)–10(– 3) of the film volume, are observed by scanning tunneling microscopy (STM) in thin films of hydrogenated amorphous silicon (a-Si:H) grown by rf-plasma-enhanced deposition using optimized conditions. The particles are produced in the discharge and incorporated in the film during growth, in contradiction to expected particle trapping by discharge sheath fields. The interfaces between the nanoparticles and the homogeneous film can produce low-density regions that form electronic defects in a-Si:H films
Construction of silicon nanocolumns with the scanning tunneling microscope
Voltage pulses to a scanning tunneling microscope (STM) are used to construct silicon columns of 30–100 Å diameter and up to 200 Å height on a silicon surface and on the end of a tungsten probe. These nanocolumns have excellent conductivity and longevity, and they provide an exceptional new ability to measure the shapes of nanostructures with a STM. This construction methodology and these slender yet robust columns provide a basis for nanoscale physics, lithography, and technology
The Influence of Operational Resources and Activities on Indirect Personnel Costs: A Multilevel Modeling Approach
Indirect activities often represent an underemphasized, yet significant, contributing source of costs for organizations. In order to manage indirect costs, organizations must understand how these costs behave relative to changes in operational resources and activities. This is of particular interest to the Air Force and its sister services, because recent and projected reductions in defense spending are forcing reductions in their operational variables, and insufficient research exists to help them understand how this may influence indirect costs. Furthermore, although academic research on indirect costs has advanced the knowledge behind the modeling and behavior of indirect costs, significant gaps in the literature remain. Our research provides important and timely advances to the indirect cost literature. First, our research disaggregates the indirect cost pool and focuses on indirect personnel costs, which represent 33% of all Air Force indirect costs and are a leading source of indirect costs in many organizations. Second, we employ a multilevel modeling approach to capture the hierarchical nature of an enterprise, allowing us to assess the influence that each level of an organization has on indirect cost behavior and relationships. Third, we identify the operational variables that influence indirect personnel costs in the Air Force enterprise, providing Air Force decision-makers with evidence-based knowledge to inform decisions regarding budget reduction strategies
Nanoscale study of the as-grown hydrogenated amorphous silicon surface
A scanning tunneling microscope has been used to study the topography of the as-grown surface of device-quality, intrinsic, hydrogenated amorphous silicon deposited by rf discharge from silane. The substrates were atomically flat, oxide-free, single-crystal silicon or gallium arsenide. No evidence for island formation or nanoscale irregularities was seen in studies of 100-Å-thick films on either silicon or gallium arsenide. The topography of 1000- and 4000-Å-thick films has much variation; many regions can be characterized as rolling hills, but atomically flat areas have also been observed nearby. Generally, it appears that surface diffusion plays a role in smoothing the film topography. In most regions, the observed slopes were 10% or less from horizontal, but some steep-sided valleys, indicating incipient voids, were observed. The effect of the finite size of the scanning tunneling microscope probe tip is considered; this has an effect on the observed images in some cases
Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density
We explore the effects of the deflagration to detonation transition (DDT)
density on the production of Ni-56 in thermonuclear supernova explosions (type
Ia supernovae). Within the DDT paradigm, the transition density sets the amount
of expansion during the deflagration phase of the explosion and therefore the
amount of nuclear statistical equilibrium (NSE) material produced. We employ a
theoretical framework for a well-controlled statistical study of
two-dimensional simulations of thermonuclear supernovae with randomized initial
conditions that can, with a particular choice of transition density, produce a
similar average and range of Ni-56 masses to those inferred from observations.
Within this framework, we utilize a more realistic "simmered" white dwarf
progenitor model with a flame model and energetics scheme to calculate the
amount of Ni-56 and NSE material synthesized for a suite of simulated
explosions in which the transition density is varied in the range 1-3x10^7
g/cc. We find a quadratic dependence of the NSE yield on the log of the
transition density, which is determined by the competition between plume rise
and stellar expansion. By considering the effect of metallicity on the
transition density, we find the NSE yield decreases by 0.055 +/- 0.004 solar
masses for a 1 solar metallicity increase evaluated about solar metallicity.
For the same change in metallicity, this result translates to a 0.067 +/- 0.004
solar mass decrease in the Ni-56 yield, slightly stronger than that due to the
variation in electron fraction from the initial composition. Observations
testing the dependence of the yield on metallicity remain somewhat ambiguous,
but the dependence we find is comparable to that inferred from some studies.Comment: 15 pages, 13 figures, accepted to ApJ on July 6, 201
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
Recommended from our members
Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity.
We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparticles with 6.1 nm spatial resolution with elemental specificity. We measured single-shot diffraction patterns of the nanoparticles using intense x-ray free electron laser pulses. By exploiting the curvature of the Ewald sphere and the symmetry of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell structures from these diffraction patterns. To extract 3D structural information beyond the diffraction signal, we implemented a super-resolution technique by taking advantage of CDI's quantitative reconstruction capabilities. We used high-resolution model fitting to determine the Au core size and the Pd shell thickness to be 65.0 ± 1.0 nm and 4.0 ± 0.5 nm, respectively. We also identified the 3D elemental distribution inside the nanoparticles with an accuracy of 3%. To further examine the model fitting procedure, we simulated noisy diffraction patterns from a Au/Pd core-shell model and a solid Au model and confirmed the validity of the method. We anticipate this super-resolution CDI method can be generally used for quantitative 3D imaging of symmetrical nanostructures with elemental specificity
Stellar Populations in Three Outer Fields of the LMC
We present HST photometry for three fields in the outer disk of the LMC
extending approximately four magnitudes below the faintest main sequence
turnoff. We cannot detect any strongly significant differences in the stellar
populations of the three fields based on the morphologies of the
color-magnitude diagrams, the luminosity functions, and the relative numbers of
stars in different evolutionary stages. Our observations therefore suggest
similar star formation histories in these regions, although some variations are
certainly allowed. The fields are located in two regions of the LMC: one is in
the north-east field and two are located in the north-west. Under the
assumption of a common star formation history, we combine the three fields with
ground-based data at the same location as one of the fields to improve
statistics for the brightest stars. We compare this stellar population with
those predicted from several simple star formation histories suggested in the
literature, using a combination of the R-method of Bertelli et al (1992) and
comparisons with the observed luminosity function. The only model which we
consider that is not rejected by the observations is one in which the star
formation rate is roughly constant for most of the LMC's history and then
increases by a factor of three about 2 Gyr ago. Such a model has roughly equal
numbers of stars older and younger than 4 Gyr, and thus is not dominated by
young stars. This star formation history, combined with a closed box chemical
evolution model, is consistent with observations that the metallicity of the
LMC has doubled in the past 2 Gyr.Comment: 30 pages, includes 10 postscript figures. Figure 1 avaiable at
ftp://charon.nmsu.edu/pub/mgeha/LMC. Accepted for publication in Astronomical
Journa
BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices.
Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy
- …