21 research outputs found

    Transport property study of MgO-GaAs(001) contacts for spin injection devices

    Full text link
    International audienceThe electrical properties of Au/MgO/n-GaAs(001) tunnel structures have been investigated with capacitance-voltage and current-voltage measurements at room temperature with various MgO thicknesses between 0.5 and 6.0nm. For an oxide thickness higher than 2nm and for low bias voltages, the voltage essentially drops across the oxide and the structure progressively enters the high-current mode of operation with increasing reverse bias voltage, the property sought in spin injection devices. In this mode, we demonstrate that a large amount of charge accumulates at the MgO/GaAsinterface in interface traps located in the semiconductor band gap

    Étude des propriétés de transport de structures MgO/GaAs (001) pour l'électronique de spin

    Full text link
    Cette thèse s inscrit dans le domaine de recherche ayant trait au développement de dispositifs basés sur l injection et la détection de courant polarisé en spin associant métaux ferromagnétiques (FM), semi-conducteurs (SC) et oxydes. La jonction FM/MgO/GaAs apparait comme un candidat prometteur dans ce domaine. Nos travaux ont porté sur l étude des mécanismes de transport et des propriétés électriques et électroniques (par des mesures I(V) et C(V)) d hétérostructures métal/MgO/GaAs_n pour différentes concentrations de dopage du semi-conducteur et d épaisseurs d oxyde. Les mécanismes qui gouvernent le transport électronique ont été identifiés et le mode de fonctionnement des différentes structures compris. Nos résultats montrent qu aucune de nos structures métal/MgO/GaAs ne permet d accéder au critère théorique énoncé par Fert et Jaffrès pour une structure latérale FM/barrière tunnel/SC/barrière tunnel/FM: d après notre étude, il n est pas possible, par notre méthode de préparation, de réaliser des dispositifs basés sur le contact MgO/GaAs permettant d injecter et de détecter efficacement un courant polarisé en spin à température ambiante. Ceci s explique par le fait que pendant la phase de dépôt du MgO, des défauts sont induits dans la bande interdite du semi-conducteur sur des profondeurs de plusieurs dizaines de nanomètres.The background of this thesis work is the growing development of spintronic devices based on injection and detection of spin polarized current from a ferromagnetic metal (FM) into a semiconductor (SC) through a thin oxide tunnel barrier. The FM/MgO/GaAs contact appears as very promising candidate. In this framework, we have studied the transport mechanisms and electrical properties methods of Au/MgO/GaAs heterojunctions using I(V) and C(V) for various doping concentration and oxide thickness. We have determined the transport mechanisms which control the current injection and understood the mode of operation of this kind of structures. Our results show that the Fert and Jaffrès s theoretical criterion for lateral FM/tunnel barrier/SC/tunnel barrier/FM structure is not fulfilled for none metal/MgO/GaAs junctions: this study demonstrate that it is not possible to inject and detect spin-polarized current efficiently through MgO/GaAs contact at room temperature with our growth method. The main fundamental reason for this failure is that deposition of MgO induces defects which extend on a depth of several tens of nanometer in semiconductor band gap.RENNES1-BU Sciences Philo (352382102) / SudocSudocFranceF

    Transport mechanisms in MgO/GaAs(001) delta-doped junctions

    Full text link
    International audienceThe transport mechanisms through MgO ultrathin layers (0.5-1.2 nm) deposited on n-type doped GaAs(001) layers have been studied. In order to favor field emission (FE) across the junctions, a high doping concentration layer in vicinity of the semiconductor surfaces has been included. Varying doping concentration of the underlying GaAs layer we find that the dominant transport mechanism is either the variable-range hopping mechanism or a thermionic emission-like process instead of the FE process. The observation of such mechanisms can be explained by the fact that during the MgO deposition, defect states are introduced in the semiconductor band gap
    corecore