48 research outputs found

    Pseudogap and photoemission spectra in the attractive Hubbard model

    Full text link
    Angle-resolved photoemission spectra are calculated microscopically for the two-dimensional attractive Hubbard model. A system of self-consistent T-matrix equations are solved numerically in the real-time domain. The single-particle spectral function has a two-peak structure resulting from the presense of bound states. The spectral function is suppressed at the chemical potential, leading to a pseudogap-like behavior. At high temperatures and densities the pseudogap diminishes and finally disappears; these findings are similar to experimental observations for the cuprates.Comment: 5 pages, 4 figures, published versio

    Many-body GW calculations of ground-state properties: Quasi-2D electron systems and van der Waals forces

    Get PDF
    We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations

    Optically Driven Qubits in Artificial Molecules

    Get PDF
    We present novel models of quantum gates based on coupled quantum dots in which a qubit is regarded as the superposition of ground states in each dot. Coherent control on the qubit is performed by both a frequency and a polarization of a monochromatic light pulse illuminated on the quantum dots. We also show that a simple combination of two single qubit gates functions as a controlled NOT gate resulting from an electron-electron interaction. To examine the decoherence of quantum states, we discuss electronic relaxation contributed mainly by LA phonon processes.Comment: 11 pages, 4 figures, submitted to Physical Review

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    Models of coherent exciton condensation

    Full text link
    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focussing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.Comment: 27 pages, 6 figures. Submitted for a special issue of J. Phys. Cond. Matt. associated with the EU network "Photon-mediated phenomena in semiconductor nanostructures

    Self-consistent calculation of total energies of the electron gas using many-body perturbation theory

    Get PDF
    The performance of many-body perturbation theory for calculating ground-state properties is investigated. We present fully numerical results for the electron gas in three and two dimensions in the framework of the GW approximation. The overall agreement with very accurate Monte Carlo data is excellent, even for those ranges of densities for which the GW approach is often supposed to be unsuitable. The latter seems to be due to the fulfillment of general conservation rules. These results open further prospects for accurate calculations of ground-state properties circumventing the limitations of standard density-functional theory

    In-medium two-nucleon properties in high electric fields

    Full text link
    The quantum mechanical two - particle problem is considered in hot dense nuclear matter under the influence of a strong electric field such as the field of the residual nucleus in heavy - ion reactions. A generalized Galitskii-Bethe-Salpeter equation is derived and solved which includes retardation and field effects. Compared with the in-medium properties in the zero-field case, bound states are turned into resonances and the scattering phase shifts are modified. Four effects are observed due to the applied field: (i) A suppression of the Pauli-blocking below nuclear matter densities, (ii) the onset of pairing occurs already at higher temperatures due to the field, (iii) a field dependent finite lifetime of deuterons and (iv) the imaginary part of the quasiparticle self-energy changes its sign for special values of density and temperatures indicating a phase instability. The latter effect may influence the fragmentation processes. The lifetime of deuterons in a strong Coulomb field is given explicitly.Comment: ps file + 7 figures (eps

    On the correct strong-coupling limit in the evolution from BCS superconductivity to Bose-Einstein condensation

    Full text link
    We consider the problem of the crossover from BCS superconductivity to Bose-Einstein condensation in three dimensions for a system of fermions with an attractive interaction, for which we adopt the simplifying assumption of a suitably regularized point-contact interaction. We examine in a critical way the fermionic (self-consistent) T-matrix approximation which has been widely utilized in the literature to describe this crossover above the superconducting critical temperature, and show that it fails to yield the correct behaviour of the system in the strong-coupling limit, where composite bosons form as tightly bound fermion pairs. We then set up the correct approximation for a ``dilute'' system of composite bosons and show that an entire new class of diagrams has to be considered in the place of the fermionic T-matrix approximation for the self-energy. This new class of diagrams correctly describes both the weak- and strong-coupling limits, and consequently results into an improved interpolation scheme for the intermediate (crossover) region. In this context, we provide also a systematic mapping between the corresponding diagrammatic theories for the composite bosons and the constituent fermions. As a preliminary result to demonstrate the numerical effect of our new class of diagrams on physical quantities, we calculate the value of the scattering length for composite bosons in the strong-coupling limit and show that it is considerably modified with respect to the result obtained within the self-consistent fermionic T-matrix approximation.Comment: 25 pages, 14 figures included in pape

    Density-Induced Breaking of Pairs in the Attractive Hubbard Model

    Full text link
    A conserving T-matrix approximation is applied to the two-dimensional attractive Hubbard model in the low-density regime. A set of self-consistent equations is solved in the real-frequency domain to avoid the analytic continuation procedure. By tuning the chemical potential the particle density was varied in the limits 0.01 < n < 0.18. For the value of the attractive potential U=8t the binding energy of pairs monotonically decreases with increasing n, from its zero-density limit 2.3t and vanishes at a critical density n=0.19. A pairing-induced pseudogap in the single-particle density of states is found at low densities and temperatures.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Weakly Interacting, Dilute Bose Gases in 2D

    Full text link
    This article surveys a number of theoretical problems and open questions in the field of two-dimensional dilute Bose gases with weak repulsive interactions. In contrast to three dimensions, in two dimensions the formation of long-range order is prohibited by the Bogoliubov-Hohenberg theorem, and Bose-Einstein condensation is not expected to be realized. Nevertheless, first experimental indications supporting the formation of the condensate in low dimensional systems have been recently obtained. This unexpected behaviour appears to be due to the non-uniformity, introduced into a system by the external trapping potential. Theoretical predictions, made for homogeneous systems, require therefore careful reexamination. We survey a number of popular theoretical treatments of the dilute weakly interacting Bose gas and discuss their regions of applicability. The possibility of Bose-Einstein condensation in a two-dimensional gas, the validity of perturbative t-matrix approximation and diluteness condition are issues that we discuss in detail.Comment: Survey, 25 pages RMP style, revised version, refs added, some changes made, accepted for publication in Rev. Mod. Phy
    corecore