4 research outputs found

    Luminescent Analysis of ATP: Modern Objects and Processes for Sensing

    No full text
    Bioluminescent analysis of adenosine triphosphate (ATP) concentrations is now acquiring new applications in the form of objects and processes in which it can be effectively used for sensing. A quick analysis of biological objects and systems for which the level of ATP concentrations is one of the main parameters, and a forecast of the development of various situations in such biosystems under industrial production conditions or the ecological state of the environment, confirmed by various results of analytical control of other parameters, turns out to be simple and effective. Sanitary control, quality control of purified water, microbial analysis in the food industry, maintenance of drugs and estimation of their quality, and monitoring of the metabolic state of biocatalysts used in various biotechnological processes are between the main trends of recent applications of bioluminescent ATP-assay. Additionally, the new areas of ATP sensing are developed, and the following topics are their creation of synthetic microbial consortia, their introduction as new biocatalysts to biodegradation of pesticides, suppression of methane accumulation in model urban land fields, control of dangerous development of biocorrosive processes, design of chemical-biocatalytic hybrid processes, creation of effective antimicrobial dressing and protective tissue materials, etc. These aspects are the subject of this review

    Liposomal Form of 2,4-Dinitrophenol Lipophilic Derivatives as a Promising Therapeutic Agent for ATP Synthesis Inhibition

    No full text
    Mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) is a promising antidiabetic and antiobesity agent. Its clinical use is limited by a narrow dynamic range and accumulation in non-target sensitive organs, which results in whole-body toxicity. A liposomal formulation could enable the mentioned drawbacks to be overcome and simplify the liver-targeted delivery and sustained release of 2,4-DNP. We synthesized 2,4-DNP esters with carboxylic acids of various lipophilic degrees using carboxylic acid chloride and then loaded them into liposomes. We demonstrated the effective increase in the entrapment of 2,4-DNP into liposomes when esters were used. Here, we examined the dependence of the sustained release of 2,4-DNP from liposomes on the lipid composition and LogPoct of the ester. We posit that the optimal chain length of the ester should be close to the palmitic acid and the lipid membrane should be composed of phospholipids with a certain phase transition point depending on the desired release rate. The increased effect of the ATP synthesis inhibition of the liposomal forms of caproic and palmitic acid esters compared to free molecules in liver hepatocytes was demonstrated. The liposomes’ stability could well be responsible for this result. This work demonstrates promising possibilities for the liver-targeted delivery of the 2,4-DNP esters with carboxylic acids loaded into liposomes for ATP synthesis inhibition

    Structural and Biochemical Characterization of a Cold-Active PMGL3 Esterase with Unusual Oligomeric Structure

    No full text
    The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/β hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%
    corecore