3 research outputs found

    GISH Analysis of the Introgression of the B Subgenome Genetic Material of Wild Allotetraploid Species <i>Solanum stoloniferum</i> into Backcrossing Progenies with Potato

    No full text
    Wild relatives of cultivated potato are used in breeding to increase the genetic diversity of Solanum tuberosum (AAAA genome) varieties. Wild Mexican allotetraploid species Solanum stoloniferum (AABB genome) was used in breeding for extreme resistance to viruses and late blight. In this study, genomic in situ hybridization (GISH) was used for visualization of introgression of genetic material of the B subgenome of S. stoloniferum into the genome of backcross hybrids. The fertile hexaploid hybrid had 48 chromosomes of the A genome and 24 chromosomes of the B subgenome. Plants of the BC1 generation were pentaploid having the AAAAB genome constitution and three selected BC2 hybrids were aneuploid, containing one to six chromosomes of the B subgenome and 48 chromosomes of the A genome. The B subgenome of S. stoloniferum was inherited in the backcross generations as single chromosomes and in rare cases as recombinant chromosomes. GISH showed that chromosome pairing in the backcross hybrids was predominantly intragenomic. Most chromosomes of the B subgenome remained as univalents in backcross hybrids. Rare homeologous A/B chromosome pairing was detected in all analyzed hybrids. The obtained data indicate that the B subgenome of S. stoloniferum was able to recombine with the A genome

    Metabolic Alterations in Male-Sterile Potato as Compared to Male-Fertile

    No full text
    The common potato, Solanum tuberosum L., is the fourth most important agricultural crop worldwide. Until recently, vegetative propagation by tubers has been the main method of potato cultivation. A shift of interest to sexual potato reproduction by true botanical seeds is due to the appearance of a new hybrid seed breeding strategy whose successful application for many crop species has been supported by male sterility. This investigation was focused on the study of differences in the metabolite profiles of anthers at the mature pollen stage from male-fertile and male-sterile genotypes of S. tuberosum. Application of gas chromatography coupled with a mass spectrometry method allowed detection of metabolic profiles for 192 compounds. Further data analysis with several libraries fully identified 75 metabolites; a similar amount was defined up to the classes. Metabolic profiles in the anthers of fertile genotypes were significantly distinguished from male-sterile ones by the accumulation of carbohydrates, while the anthers of sterile genotypes contained a higher amount of amino acids. In comparison with male-fertile plants, male-sterile genotypes had undeveloped pollen grain characters; i.e., smaller grain size, a thicker exine, “permanent tetrads” that failed to disintegrate into microspores, and the absence of pollen apertures that might be due to a disorder in the metabolism of carbohydrates and fatty acids
    corecore