649 research outputs found

    Fully Bayesian Penalized Regression with a Generalized Bridge Prior

    Get PDF
    We consider penalized regression models under a unified framework. The particular method is determined by the form of the penalty term, which is typically chosen by cross validation. We introduce a fully Bayesian approach that incorporates both sparse and dense settings and show how to use a type of model averaging approach to eliminate the nuisance penalty parameters and perform inference through the marginal posterior distribution of the regression coefficients. We establish tail robustness of the resulting estimator as well as conditional and marginal posterior consistency for the Bayesian model. We develop a component-wise Markov chain Monte Carlo algorithm for sampling. Numerical results show that the method tends to select the optimal penalty and performs well in both variable selection and prediction and is comparable to, and often better than alternative methods. Both simulated and real data examples are provided

    Sufficient burn-in for Gibbs samplers for a hierarchical random effects model

    Full text link
    We consider Gibbs and block Gibbs samplers for a Bayesian hierarchical version of the one-way random effects model. Drift and minorization conditions are established for the underlying Markov chains. The drift and minorization are used in conjunction with results from J. S. Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566] and G. O. Roberts and R. L. Tweedie [Stochastic Process. Appl. 80 (1999) 211-229] to construct analytical upper bounds on the distance to stationarity. These lead to upper bounds on the amount of burn-in that is required to get the chain within a prespecified (total variation) distance of the stationary distribution. The results are illustrated with a numerical example

    Batch means and spectral variance estimators in Markov chain Monte Carlo

    Full text link
    Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic normal distribution. We consider spectral and batch means methods for estimating this variance. In particular, we establish conditions which guarantee that these estimators are strongly consistent as the simulation effort increases. In addition, for the batch means and overlapping batch means methods we establish conditions ensuring consistency in the mean-square sense which in turn allows us to calculate the optimal batch size up to a constant of proportionality. Finally, we examine the empirical finite-sample properties of spectral variance and batch means estimators and provide recommendations for practitioners.Comment: Published in at http://dx.doi.org/10.1214/09-AOS735 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore