351 research outputs found
An Improved Cryosat-2 Sea Ice Freeboard Retrieval Algorithm Through the Use of Waveform Fitting
We develop an empirical model capable of simulating the mean echo power cross product of CryoSat-2 SAR and SAR In mode waveforms over sea ice covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surfaceelevation of both sea ice floes and leads. The numerical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of look-up tables and a bounded trust region Newton least squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retrackingmethods which are here shown to be sensitive to the combined effect of bandwidth limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement, however consistent assumptions about the snow depth and density of sea ice werenot used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. For three IceBridge campaign periods from March 20112013, mean differences (CryoSat-2 IceBridge) of 0.144m and 1.351m are respectively found between the freeboard and thickness retrievals using a 50 sea ice floe threshold retracker, while mean differences of 0.019m and 0.182m are found when using the waveform fitting method. This suggests the waveform fitting technique is capable of better reconciling the seaice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions
Oligocene-Miocene drainage evolution of NW Borneo: Stratigraphy, sedimentology and provenance of Tatau-Nyalau province sediments
Clastic sediments of Oligocene to Lower Miocene age form a major thick and widespread sequence in the Tatau-Nyalau province of the north Sarawak Miri Zone. New light and heavy mineral data, U-Pb detrital zircon geochronology and biostratigraphy are used to identify the age, depositional environment, and potential provenance of sediments to reconstruct the drainage evolution of NW Borneo. Based on the biostratigraphic ages, depositional environments and provenance characteristics we modify previous stratigraphy and divide the Oligocene to Lower Miocene sequences into the Nyalau Formation (Biban Sandstone Member and Upper Nyalau Member), Kakus Unit, and Merit-Pila Formation. Two dominant source provinces were identified: the Malay-Thai Tin Belt which supplied sediments dominated by Permian-Triassic zircons, and the Schwaner Mountains of central Borneo which are identified by abundant Cretaceous zircons. Sediments either came directly, or were recycled from older sedimentary rocks, from these sources. The Sunda River deposited the Nyalau Formation during the Oligocene to Early Miocene with a dominant Malay-Thai Tin Belt source. The Merit-Pila Formation of the Sibu Zone was deposited contemporaneously by a proto-Rajang River that drained Central Borneo (recycling the Rajang Group and Schwaner granitoids). Between c. 17 Ma the Sunda River system terminated and sedimentation was dominated by the northward prograding proto-Rajang River delta, depositing the Kakus Unit in the Miri Zone. This drainage system was active until the Late Miocene, before further uplift of Borneo terminated most sedimentation in the onshore part of present-day Borneo
Diffusion-Limited Aggregation on Curved Surfaces
We develop a general theory of transport-limited aggregation phenomena
occurring on curved surfaces, based on stochastic iterated conformal maps and
conformal projections to the complex plane. To illustrate the theory, we use
stereographic projections to simulate diffusion-limited-aggregation (DLA) on
surfaces of constant Gaussian curvature, including the sphere () and
pseudo-sphere (), which approximate "bumps" and "saddles" in smooth
surfaces, respectively. Although curvature affects the global morphology of the
aggregates, the fractal dimension (in the curved metric) is remarkably
insensitive to curvature, as long as the particle size is much smaller than the
radius of curvature. We conjecture that all aggregates grown by conformally
invariant transport on curved surfaces have the same fractal dimension as DLA
in the plane. Our simulations suggest, however, that the multifractal
dimensions increase from hyperbolic () geometry, which
we attribute to curvature-dependent screening of tip branching.Comment: 4 pages, 3 fig
Limitation of energy deposition in classical N body dynamics
Energy transfers in collisions between classical clusters are studied with
Classical N Body Dynamics calculations for different entrance channels. It is
shown that the energy per particle transferred to thermalised classical
clusters does not exceed the energy of the least bound particle in the cluster
in its ``ground state''. This limitation is observed during the whole time of
the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl
ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan
We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981–2000 is assessed using several statistical tests and quantile–quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081–2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan
The Current State of Performance Appraisal Research and Practice: Concerns, Directions, and Implications
On the surface, it is not readily apparent how some performance appraisal research issues inform performance appraisal practice. Because performance appraisal is an applied topic, it is useful to periodically consider the current state of performance research and its relation to performance appraisal practice. This review examines the performance appraisal literature published in both academic and practitioner outlets between 1985 and 1990, briefly discusses the current state of performance appraisal practice, highlights the juxtaposition of research and practice, and suggests directions for further research
Heating of nuclei with energetic anti-protons
International audienceHigh-energy γ rays associated with the decay of the giant dipole resonance have been measured for two fusion reactions leading to the 140Sm compound nucleus at an excitation energy of 71 MeV. The observed yield increases with the asymmetry in the ratios of the number of neutrons to protons in the entrance channel. This is interpreted as resulting from giant dipole phonons excited at the moment of collision in an N/Z asymmetric reaction
Sea Ice Thickness, Freeboard, and Snow Depth products from Operation IceBridge Airborne Data
The study of sea ice using airborne remote sensing platforms provides unique capabilities to measure a wide variety of sea ice properties. These measurements are useful for a variety of topics including model evaluation and improvement, assessment of satellite retrievals, and incorporation into climate data records for analysis of interannual variability and long-term trends in sea ice properties. In this paper we describe methods for the retrieval of sea ice thickness, freeboard, and snow depth using data from a multisensor suite of instruments on NASA's Operation IceBridge airborne campaign. We assess the consistency of the results through comparison with independent data sets that demonstrate that the IceBridge products are capable of providing a reliable record of snow depth and sea ice thickness. We explore the impact of inter-campaign instrument changes and associated algorithm adaptations as well as the applicability of the adapted algorithms to the ongoing IceBridge mission. The uncertainties associated with the retrieval methods are determined and placed in the context of their impact on the retrieved sea ice thickness. Lastly, we present results for the 2009 and 2010 IceBridge campaigns, which are currently available in product form via the National Snow and Ice Data Cente
Uplift resistance of horizontal strip anchors in sand: a cavity expansion approach
This letter presents an analytical cavity expansion theory-based method for predicting peak uplift resistance of shallow horizontal strip anchors buried in sand. Based on an analytical two-dimensional stress solution for loading analysis around a cylindrical cavity, the method was developed by assuming that the peak anchor uplift resistance can be approximated by the cavity breakout pressure. In the new cavity expansion model, the ultimate failure is reached once the plastic zone develops to the ground surface, and the biaxial state of in-situ ground stresses is taken into account. A database consisting of 75 model tests on shallow strip anchors in sands was compiled to valid the new method. The predicted results and measured data are in reasonable agreement, with a mean over-prediction of the peak uplift resistance by 1.6%. The reliability of the new solution was also checked by comparing with other commonly used analytical solutions. It is shown that the present solution can provide a simple analytical tool for predictions of the peak uplift resistance of strip anchors in sand while a sliding-block failure mechanism dominates
A Reconciled Estimate of Ice-Sheet Mass Balance
We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup 1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup 1) to the rate of global sea-level rise
- …