110 research outputs found
Identification of Promoter Region Markers Associated With Altered Expression of Resistance-Nodulation-Division Antibiotic Efflux Pumps in Acinetobacter baumannii
Genetic alterations leading to the constitutive upregulation of specific efflux pumps contribute to antibacterial resistance in multidrug resistant bacteria. The identification of such resistance markers remains one of the most challenging tasks of genome-level resistance predictors. In this study, 487 non-redundant genetic events were identified in upstream zones of three operons coding for resistance-nodulation-division (RND) efflux pumps of 4,130 Acinetobacter baumannii isolates. These events included insertion sequences, small indels, and single nucleotide polymorphisms. In some cases, alterations explicitly modified the expression motifs described for these operons, such as the promoter boxes, operators, and Shine-Dalgarno sequences. In addition, changes in DNA curvature and mRNA secondary structures, which are structural elements that regulate expression, were also calculated. According to their influence on RND upregulation, the catalog of upstream modifications were associated with "experimentally verified," "presumed," and "probably irrelevant" degrees of certainty. For experimental verification, DNA of upstream sequences independently carrying selected markers, three for each RND operon, were fused to a luciferase reporter plasmid system. Five out of the nine selected markers tested showed significant increases in expression with respect to the wild-type sequence control. In particular, a 25-fold expression increase was observed with the ISAba1 insertion sequence upstream the adeABC pump. Next, overexpression of each of the three multi-specific RND pumps was linked to their respective antibacterial substrates by a deep A. baumannii literature screen. Consequently, a data flow framework was then developed to link genomic upregulatory RND determinants to potential antibiotic resistance. Assignment of potential increases in minimal inhibitory concentrations at the "experimentally verified" level was permitted for 42 isolates to 7-8 unrelated antibacterial agents including tigecycline, which is overlooked by conventional resistome predictors. Thus, our protocol may represent a time-saving filter step prior to laborious confirmation experiments for efflux-driven resistance. Altogether, a computational-experimental pipeline containing all components required for identifying the upstream regulatory resistome is proposed. This schema may provide the foundational stone for the elaboration of tools approaching antibiotic efflux that complement routine resistome predictors for preventing antimicrobial therapy failure against difficult-to-threat bacteria.This research was supported by grants MPY 380/18 and MPY 509/19 from the Instituto de Salud Carlos III (ISCIII). ML-S is the recipient of a Sara Borrell contract by the ISCIII. AM-G is the recipient of a Miguel Servet contract by the ISCIII.S
Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern
The effect of emerging SARS-CoV-2 variants on vaccine efficacy is of critical importance. In this study, the potential impact of mutations that facilitate escape from the cytotoxic cellular immune response in these new virus variants for the 551 most abundant HLA class I alleles was analyzed. Computational prediction showed that most of these alleles, that cover >90% of the population, contain enough epitopes without escape mutations in the principal SARS-CoV-2 variants. These data suggest that the cytotoxic cellular immune protection elicited by vaccination is not greatly affected by emerging SARS-CoV-2 variants.This research was supported by grants from COV20_00679 (MPY 222-20), to MM, MPY 509/19 to AM-G, and MPY 388/18 to DL of âAcciĂłn EstratĂ©gica en Saludâ from the ISCIII.S
Predicted impact of the viral mutational landscape on the cytotoxic response against SARS-CoV-2
The massive assessment of immune evasion due to viral mutations that increase COVID-19 susceptibility can be computationally facilitated. The adaptive cytotoxic T response is critical during primary infection and the generation of long-term protection. Here, potential HLA class I epitopes in the SARS-CoV-2 proteome were predicted for 2,915 human alleles of 71 families using the netMHCIpan EL algorithm. Allele families showed extreme epitopic differences, underscoring genetic variability of protective capacity between humans. Up to 1,222 epitopes were associated with any of the twelve supertypes, that is, allele clusters covering 90% population. Next, from all mutations identified in ~118,000 viral NCBI isolates, those causing significant epitope score reduction were considered epitope escape mutations. These mutations mainly involved non-conservative substitutions at the second and C-terminal position of the ligand core, or total ligand removal by large recurrent deletions. Escape mutations affected 47% of supertype epitopes, which in 21% of cases concerned isolates from two or more sub-continental areas. Some of these changes were coupled, but never surpassed 15% of evaded epitopes for the same supertype in the same isolate, except for B27. In contrast to most supertypes, eight allele families mostly contained alleles with few SARS-CoV-2 ligands. Isolates harboring cytotoxic escape mutations for these families co-existed geographically within sub-Saharan and Asian populations enriched in these alleles according to the Allele Frequency Net Database. Collectively, our findings indicate that escape mutation events have already occurred for half of HLA class I supertype epitopes. However, it is presently unlikely that, overall, it poses a threat to the global population. In contrast, single and double mutations for susceptible alleles may be associated with viral selective pressure and alarming local outbreaks. The integration of genomic, geographical and immunoinformatic information eases the surveillance of variants potentially affecting the global population, as well as minority subpopulations.This research was supported by Acción Estratégica en Salud from the ISCIII (https://www.isciii.es), grants MPY 380/18 (to MJM), 388/18 (to DL) and 509/19 (to AJM-G). AJM-G is the recipient of a Miguel Servet contract by the ISCIII. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S
Mutation Analysis in Regulator DNA-Binding Regions for Antimicrobial Efflux Pumps in 17,000 Pseudomonas aeruginosa Genomes
Mutations leading to upregulation of efflux pumps can produce multiple drug resistance in the pathogen Pseudomonas aeruginosa. Changes in their DNA binding regions, i.e., palindromic operators, can compromise pump depression and subsequently enhance resistance against several antibacterials and biocides. Here, we have identified (pseudo)palindromic repeats close to promoters of genes encoding 13 core drug-efflux pumps of P. aeruginosa. This framework was applied to detect mutations in these repeats in 17,292 genomes. Eighty-nine percent of isolates carried at least one mutation. Eight binary genetic properties potentially related to expression were calculated for mutations. These included palindromicity reduction, mutation type, positioning within the repeat and DNA-bending shift. High-risk ST298, ST308 and ST357 clones commonly carried four conserved mutations while ST175 and the cystic fibrosis-linked ST649 clones showed none. Remarkably, a T-to-C transition in the fourth position of the upstream repeat for mexEF-oprN was nearly exclusive of the high-risk ST111 clone. Other mutations were associated with high-risk sublineages using sample geotemporal metadata. Moreover, 1.5% of isolates carried five or more mutations suggesting they undergo an alternative program for regulation of their effluxome. Overall, P. aeruginosa shows a wide range of operator mutations with a potential effect on efflux pump expression and antibiotic resistance.This research was funded by Acción Estratégica en Salud from the ISCIII, grant MPY 509/19. This research was also supported by Personalized and Precision Medicine grant from the Instituto de Salud Carlos III (MePRAM Project, PMP22/00092), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea-NextGenerationEU.S
International Wildlife Law : Understanding and Enhancing Its Role in Conservation
We gratefully acknowledge valuable input by Kees Bastmeijer, Sanja Bogojevic, Jennifer Dubrulle, and Han Somsen.Peer reviewedPublisher PD
Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins
The B and T lymphocytes of the adaptive immune system are important for the control of most viral infections, including COVID-19. Identification of epitopes recognized by these cells is fundamental for understanding how the immune system detects and removes pathogens, and for antiviral vaccine design. Intriguingly, several cross-reactive T lymphocyte epitopes from SARS-CoV-2 with other betacoronaviruses responsible for the common cold have been identified. In addition, antibodies that cross-recognize the spike protein, but not the nucleoprotein (N protein), from different betacoronavirus have also been reported. Using a consensus of eight bioinformatic methods for predicting B-cell epitopes and the collection of experimentally detected epitopes for SARS-CoV and SARS-CoV-2, we identified four surface-exposed, conserved, and hypothetical antigenic regions that are exclusive of the N protein. These regions were analyzed using ELISA assays with two cohorts: SARS-CoV-2 infected patients and pre-COVID-19 samples. Here we describe four epitopes from SARS-CoV-2 N protein that are recognized by the humoral response from multiple individuals infected with COVID-19, and are conserved in other human coronaviruses. Three of these linear surface-exposed sequences and their peptide homologs in SARS-CoV-2 and HCoV-OC43 were also recognized by antibodies from pre-COVID-19 serum samples, indicating cross-reactivity of antibodies against coronavirus N proteins. Different conserved human coronaviruses (HCoVs) cross-reactive B epitopes against SARS-CoV-2 N protein are detected in a significant fraction of individuals not exposed to this pandemic virus. These results have potential clinical implications.This research was supported by grants from COV20_00679 (MPY 222-20), to M.J.M., MPY 509/19 to A.J.M.-G. and MPY 388/18 to D.L. of âAcciĂłn EstratĂ©gica en Saludâ from the ISCIII.S
Night and day - Circadian regulation of night-time dark respiration and light-enhanced dark respiration in plant leaves and canopies
The potential of the vegetation to sequester C is determined by the balance between assimilation and respiration. Respiration is under environmental and substrate-driven control, but the circadian clock might also contribute. To assess circadian control on night-time dark respiration (RD) and on light enhanced dark respiration (LEDR) - the latter providing information on the metabolic reorganization in the leaf during light-dark transitions - we performed experiments in macrocosms hosting canopies of bean and cotton. Under constant darkness (plus constant air temperature and air humidity), we tested whether circadian regulation of RD scaled from leaf to canopy respiration. Under constant light (plus constant air temperature and air humidity), we assessed the potential for leaf-level circadian regulation of LEDR. There was a clear circadian oscillation of leaf-level RD in both species and circadian patterns scaled to the canopy. LEDR was under circadian control in cotton, but not in bean indicating species-specific controls. The circadian rhythm of LEDR in cotton might indicate variable suppression of the normal cyclic function of the tricarboxylic-acid-cycle in the light. Since circadian regulation is assumed to act as an adaptive memory to adjust plant metabolism based on environmental conditions from previous days, circadian control of RD may help to explain temporal variability of ecosystem respiration.This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation âInvestissement d'Avenirâ AnaEE-France ANR-11-INBS-0001, ExpeER Transnational Access program, RamĂłn y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course MEDfOR, internal grants from UWS-HIE to VRD and ZALF to AG and Juan de la Cierva-fellowships (IJCI-2014-21393 to JGA). We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (AĂŻda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance
Forest and woodland replacement patterns following drought-related mortality
Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Peer reviewe
Whole Genome Sequencing and Evolutionary Analysis of Human Respiratory Syncytial Virus A and B from Milwaukee, WI 1998-2010
BACKGROUND: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. METHODOLOGY/PRINCIPAL FINDINGS: We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998-2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. CONCLUSIONS/SIGNIFICANCE: The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics
Evolutionary Pathways of the Pandemic Influenza A (H1N1) 2009 in the UK
The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre (âlow reactorsâ) were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis
- âŠ