1 research outputs found

    Learning in Repeated Multi-Unit Pay-As-Bid Auctions

    Full text link
    Motivated by Carbon Emissions Trading Schemes, Treasury Auctions, and Procurement Auctions, which all involve the auctioning of homogeneous multiple units, we consider the problem of learning how to bid in repeated multi-unit pay-as-bid auctions. In each of these auctions, a large number of (identical) items are to be allocated to the largest submitted bids, where the price of each of the winning bids is equal to the bid itself. The problem of learning how to bid in pay-as-bid auctions is challenging due to the combinatorial nature of the action space. We overcome this challenge by focusing on the offline setting, where the bidder optimizes their vector of bids while only having access to the past submitted bids by other bidders. We show that the optimal solution to the offline problem can be obtained using a polynomial time dynamic programming (DP) scheme. We leverage the structure of the DP scheme to design online learning algorithms with polynomial time and space complexity under full information and bandit feedback settings. We achieve an upper bound on regret of O(MTlog⁑∣B∣)O(M\sqrt{T\log |\mathcal{B}|}) and O(M∣B∣Tlog⁑∣B∣)O(M\sqrt{|\mathcal{B}|T\log |\mathcal{B}|}) respectively, where MM is the number of units demanded by the bidder, TT is the total number of auctions, and ∣B∣|\mathcal{B}| is the size of the discretized bid space. We accompany these results with a regret lower bound, which match the linear dependency in MM. Our numerical results suggest that when all agents behave according to our proposed no regret learning algorithms, the resulting market dynamics mainly converge to a welfare maximizing equilibrium where bidders submit uniform bids. Lastly, our experiments demonstrate that the pay-as-bid auction consistently generates significantly higher revenue compared to its popular alternative, the uniform price auction.Comment: 51 pages, 12 Figure
    corecore