3 research outputs found

    Strategies for enzymological studies and measurements of biological molecules with the cytolysin A nanopore

    Get PDF
    Pore-forming toxins are used in a variety of biotechnological applications. Typically, individual membrane proteins are reconstituted in artificial lipid bilayers where they form water-filled nanoscale apertures (nanopores). When a voltage is applied, the ionic current passing through a nanopore can be used for example to sequence biopolymers, identify molecules, or to study chemical or enzymatic reactions at the single-molecule level. Here we present strategies for studying individual enzymes and measuring molecules, also in highly complex biological samples such as blood

    Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic

    Get PDF
    During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs

    Hypothesis-Driven, Structure-Based Design in Photopharmacology:The Case of eDHFR Inhibitors

    Get PDF
    [Image: see text] Photopharmacology uses light to regulate the biological activity of drugs. This precise control is obtained through the incorporation of molecular photoswitches into bioactive molecules. A major challenge for photopharmacology is the rational design of photoswitchable drugs that show light-induced activation. Computer-aided drug design is an attractive approach toward more effective, targeted design. Herein, we critically evaluated different structure-based approaches for photopharmacology with Escherichia coli dihydrofolate reductase (eDHFR) as a case study. Through the iterative examination of our hypotheses, we progressively tuned the design of azobenzene-based, photoswitchable eDHFR inhibitors in five design–make–switch–test–analyze cycles. Targeting a hydrophobic subpocket of the enzyme and a specific salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified three inhibitors that could be activated upon irradiation and reached potencies in the low-nanomolar range. Above all, this systematic study provided valuable insights for future endeavors toward rational photopharmacology
    corecore