8 research outputs found

    Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal properties

    Get PDF
    The viscoelastic properties of hydrogels depend on the tridimensional polymeric structure and the behavior of the liquid confined in their pores. The objective here is to modulate these characteristics in plasma-derived hydrogels by the addition of glycidoxypropyl-silica nanoparticles. These nanoparticles exhibited a hydrodynamic average size between 105.4 − 151.0 nm and surface coverage with (3-Glycidoxypropyl) trimethoxysilane of 0–96 %. The reinforced hydrogels are porous networks with spherical nanoparticles homogeneously distributed into their walls. The silanol groups of silica increase four-fold humidity retention compared with the native hydrogel. This correlates with bound water &gt; 45 % on these reinforced hydrogels, in contrast with 75 % of free water on the native one (calculated from DSC in frozen hydrogels). The humidity stability can be also achieved in the hydrogel prepared with nanoparticles exhibiting 96 % organic coverage. Furthermore, this organic content promotes the microstructure chemical crosslinking, resulting in 3.9 and 1.6 higher Young's modulus compared with native and silica-reinforced hydrogels, respectively. The presence of glycidoxypropyl-silica nanoparticles in reinforced hydrogels modulated its viscoelasticity behavior, decreasing stress relaxation, which was explained using the generalized Maxwell-Wiechert model. In conclusion, novel organic-inorganic hybrid hydrogels based on plasma-derived ones and glycidoxypropyl-silica nanoparticles were developed. These nanoparticles are versatile and allow the production of hydrogels with improved viscoelastic behavior that also exhibits high water retention and morphological stability.</p

    Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal properties

    Get PDF
    The viscoelastic properties of hydrogels depend on the tridimensional polymeric structure and the behavior of the liquid confined in their pores. The objective here is to modulate these characteristics in plasma-derived hydrogels by the addition of glycidoxypropyl-silica nanoparticles. These nanoparticles exhibited a hydrodynamic average size between 105.4 − 151.0 nm and surface coverage with (3-Glycidoxypropyl) trimethoxysilane of 0–96 %. The reinforced hydrogels are porous networks with spherical nanoparticles homogeneously distributed into their walls. The silanol groups of silica increase four-fold humidity retention compared with the native hydrogel. This correlates with bound water &gt; 45 % on these reinforced hydrogels, in contrast with 75 % of free water on the native one (calculated from DSC in frozen hydrogels). The humidity stability can be also achieved in the hydrogel prepared with nanoparticles exhibiting 96 % organic coverage. Furthermore, this organic content promotes the microstructure chemical crosslinking, resulting in 3.9 and 1.6 higher Young's modulus compared with native and silica-reinforced hydrogels, respectively. The presence of glycidoxypropyl-silica nanoparticles in reinforced hydrogels modulated its viscoelasticity behavior, decreasing stress relaxation, which was explained using the generalized Maxwell-Wiechert model. In conclusion, novel organic-inorganic hybrid hydrogels based on plasma-derived ones and glycidoxypropyl-silica nanoparticles were developed. These nanoparticles are versatile and allow the production of hydrogels with improved viscoelastic behavior that also exhibits high water retention and morphological stability.</p

    Nuestra América en lucha por su verdadera independencia

    No full text
    Hace tiempo que la nuestra dejó de ser una comarca abierta a los desafueros de los imperios metropolitanos. Los pueblos están conquistando ahora su derecho a la palabra, y a nosotros nos corresponde la muy alta responsabilidad de articularlo y defenderlo. El enemigo también lo sabe, y por ello ha puesto todo el poder de su imaginación represiva al servicio de una desalmada operación de genocidio cultural. Es éste el sentido de la sistemática campaña de tergiversaciones con que los monopolios imperiales, con el concurso de las oligarquías locales y sus propios medios de imposición informativa, están tratando de desnaturalizar la identidad cultural de nuestros países para facilitar su dominio. Frente a esta conjura, defenderemos la verdad, la justicia y la belleza, y no de un modo abstracto, sino con la decisión y la lucidez con que lo exige y lo merece la personalidad original de nuestras naciones. Solo el pleno ejercicio de su soberanía, que les permitirá por fin usar en su provecho sus riquezas inmensas y su potencialidad cultural, dará una base sólida y una válida razón de ser a nuestra vida

    Separation and Characterization of NOM Intermediates Along AOP Oxidation

    No full text
    Removal of natural organic matter (NOM) in drinking water treatment systems has been a matter of thorough study in recent years. NOM affects organoleptic properties of water and causes membrane fouling; it may act as energy source for microorganisms in distribution systems and leads to the formation of undesired disinfection by-products through its interaction with chlorine. Currently the role played by advanced oxidation processes in the removal of NOM has gained great interest; understanding the composition and behaviour of NOM throughout such a kind of processes may allow to get significant insight in order to improve efficiency. In this chapter the main techniques useful for characterization are described, and their use to investigate the changes undergone by NOM throughout several AOPs has been reviewed
    corecore