809 research outputs found

    Quark and lepton masses and mixing from a gauged SU(3)_F family symmetry with a light O(eV) sterile Dirac neutrino

    Full text link
    In the framework of a complete vector-like and universal gauged SU(3)_F family symmetry, we report a global region in the parameter space where this approach can account for a realistic spectrum of quark masses and mixing in a 4 x 4 non-unitary V_{CKM}, as well as for the known charged lepton masses and the squared neutrino mass differences reported from neutrino oscillation experiments. The SU(3)FSU(3)_F family symmetry is broken spontaneously in two stages by heavy SM singlet scalars, whose hierarchy of scales yield and approximate SU(2)_F global symmetry associated to the almost degenerate boson masses of the order of the lower scale of the SU(3)_F SSB. The gauge symmetry, the fermion content, and the transformation of the scalar fields, all together, avoid Yukawa couplings between SM fermions. Therefore, in this scenario ordinary heavy fermions, top and bottom quarks and tau lepton, become massive at tree level from Dirac See-saw mechanisms, while light fermions, including light neutrinos, obtain masses from radiative corrections mediated by the massive gauge bosons of the SU(3)_F family symmetry. The displayed fit parameter space region solution for fermion masses and mixing yield the vector-like fermion masses: M_D \approx 3.2 \,TeV, M_U \approx 6.9 \,TeV, M_E \approx 21.6 \,TeV, SU(2)_F family gauge boson masses of O(2TeV)\mathcal{O} (2 TeV), and the squared neutrino mass differences: m_2^2-m_1^2 \approx 7.5 x 10^{-5}\;eV^2, m_3^2-m_2^2 \approx 2.2 x 10^{-3}\;eV^2, m_4^2-m_1^2 \approx 0.82\;eV^2.Comment: 19 pages, 1 figure, Contribution to Proceedings of the 19th Workshop "What Comes Beyond the Standard Models", July 11-19, Bled, Slovenia. arXiv admin note: substantial text overlap with arXiv:1602.08212, arXiv:1212.457

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    New Bounds for the Dichromatic Number of a Digraph

    Full text link
    The chromatic number of a graph GG, denoted by χ(G)\chi(G), is the minimum kk such that GG admits a kk-coloring of its vertex set in such a way that each color class is an independent set (a set of pairwise non-adjacent vertices). The dichromatic number of a digraph DD, denoted by χA(D)\chi_A(D), is the minimum kk such that DD admits a kk-coloring of its vertex set in such a way that each color class is acyclic. In 1976, Bondy proved that the chromatic number of a digraph DD is at most its circumference, the length of a longest cycle. Given a digraph DD, we will construct three different graphs whose chromatic numbers bound χA(D)\chi_A(D). Moreover, we prove: i) for integers k≥2k\geq 2, s≥1s\geq 1 and r1,…,rsr_1, \ldots, r_s with k≥ri≥0k\geq r_i\geq 0 and ri≠1r_i\neq 1 for each i∈[s]i\in[s], that if all cycles in DD have length rr modulo kk for some r∈{r1,…,rs}r\in\{r_1,\ldots,r_s\}, then χA(D)≤2s+1\chi_A(D)\leq 2s+1; ii) if DD has girth gg and there are integers kk and pp, with k≥g−1≥p≥1k\geq g-1\geq p\geq 1 such that DD contains no cycle of length rr modulo ⌈kp⌉p\lceil \frac{k}{p} \rceil p for each r∈{−p+2,…,0,…,p}r\in \{-p+2,\ldots,0,\ldots,p\}, then χA(D)≤⌈kp⌉\chi_A (D)\leq \lceil \frac{k}{p} \rceil; iii) if DD has girth gg, the length of a shortest cycle, and circumference cc, then χA(D)≤⌈c−1g−1⌉+1\chi_A(D)\leq \lceil \frac{c-1}{g-1} \rceil +1, which improves, substantially, the bound proposed by Bondy. Our results show that if we have more information about the lengths of cycles in a digraph, then we can improve the bounds for the dichromatic number known until now.Comment: 14 page

    Alternating Hamiltonian cycles in 22-edge-colored multigraphs

    Full text link
    A path (cycle) in a 22-edge-colored multigraph is alternating if no two consecutive edges have the same color. The problem of determining the existence of alternating Hamiltonian paths and cycles in 22-edge-colored multigraphs is an NP\mathcal{NP}-complete problem and it has been studied by several authors. In Bang-Jensen and Gutin's book "Digraphs: Theory, Algorithms and Applications", it is devoted one chapter to survey the last results on this topic. Most results on the existence of alternating Hamiltonian paths and cycles concern on complete and bipartite complete multigraphs and a few ones on multigraphs with high monochromatic degrees or regular monochromatic subgraphs. In this work, we use a different approach imposing local conditions on the multigraphs and it is worthwhile to notice that the class of multigraphs we deal with is much larger than, and includes, complete multigraphs, and we provide a full characterization of this class. Given a 22-edge-colored multigraph GG, we say that GG is 22-M\mathcal{M}-closed (resp. 22-NM\mathcal{NM}-closed)} if for every monochromatic (resp. non-monochromatic) 22-path P=(x1,x2,x3)P=(x_1, x_2, x_3), there exists an edge between x1x_1 and x3x_3. In this work we provide the following characterization: A 22-M\mathcal{M}-closed multigraph has an alternating Hamiltonian cycle if and only if it is color-connected and it has an alternating cycle factor. Furthermore, we construct an infinite family of 22-NM\mathcal{NM}-closed graphs, color-connected, with an alternating cycle factor, and with no alternating Hamiltonian cycle.Comment: 15 pages, 20 figure
    • …
    corecore