267 research outputs found
Determination of the absorption length of CO2, Nd:YAG and high power diode laser radiation for a selected grouting material
The laser beam absorption lengths of CO2, Nd:YAG and a high power diode laser (HPDL) radiation for a newly developed SiO2/Al2O3-based tile grout have been determined through the application of Beer-Lambert’s law. The findings revealed marked differences in the absorption lengths despite the material having similar beam absorption coefficients for the lasers. The absorption lengths for the SiO2/Al2O3-based tile grout for CO2, Nd:YAG and HPDL radiation were calculated as being 23211 m, 1934 m and 1838 m respectively. Moreover, this method of laser beam absorption length determination, which has hitherto been used predominantly with lasers operated in the pulsed mode, is shown to be valid for use with lasers operated in the continuous wave (CW) mode, depending upon the material being treated
Wind-Tunnel Investigation of the Opening Characteristics, Drag, and Stability of Several Hemispherical Parachutes
An investigation has been conducted to determine the opening characteristics of several hemispherical parachutes and to study the influence of the parachute design variables on these opening characteristics. The effects of design variables on the drag and stability characteristics of the parachutes were also evaluated. The tests were made in the Langley 20-foot free-spinning tunnel and in the Langley 300 MPH 7 by 10-foot tunnel
Formulas for additional mass corrections to the moments of inertia of airplanes
Formulas are presented for the calculation of the additional mass corrections to the moments of inertia of airplanes. These formulas are of particular value in converting the virtual moments of inertia of airplanes or models experimentally determined in air to the true moments of inertia. A correlation of additional moments of inertia calculated by these formulas with experimental additional moments of inertia obtained from vacuum chamber tests of 40 spin-tunnel models indicates that formulas give satisfactory estimations of the additional moments of inertia
The development and characteristics of a hand-held high power diode laser-based industrial tile grout removal and single-stage sealing system
As the field of laser materials processing becomes ever more diverse, the high power diode laser (HPDL) is now being regarded by many as the most applicable tool. The commercialisation of an industrial epoxy grout removal and single-stage ceramic tile grout sealing process is examined through the development of a hand-held HPDL device in this work. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given. The paper describes the characteristics and feasibility of the industrial epoxy grout removal process. A minimum power density of approximately 3 kW/cm2 was found to exist, whilst the minimum interaction time, below which there was no removal of epoxy tile grout, was found to be approximately 0.5 s. The maximum theoretical removal rate that may be achievable was calculated as being 65.98 mm2/s for a circular 2 mm diameter beam with a power density of 3 kW/cm2 and a traverse speed of 42 mm/s. In addition, the characteristics of the single-stage ceramic tile grout sealing are outlined. The single-stage ceramic tile grout sealing process yielded crack and porosity free seals which were produced in normal atmospheric conditions. Tiles were successfully sealed with power densities as low as 550 W/cm2 and at rates of up to 420 mm/min. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves
- …