27 research outputs found
Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range
The quasi-free scattering reactions 11C(p,2p) and 10,11,12C(p,pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p,2p) and 12C(p,pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p,2p) are found to be 'significantly smaller than for (p,pn) reactions for all investigated nuclei.German Federal Ministry of Education and Research | Ref. BMBF 05P2015RDFN1German Federal Ministry of Education and Research | Ref. 05P15WOFNAEuropean Commission | Ref. FP7, ENSAR, n. 262010Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2012-32443Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2015-64969-07387Comisión Interministerial de Ciencia y Tecnología (CICYT) | Ref. FPA2015-69640-C2-1-PSwedish Research Council | Ref. 621-2011-5324National Science Foundation, EE. UU. | Ref. n. 1415656Department of Energy, EE. UU. | Ref. n. DE-FG02-08ER41533Fundação para a Ciência e a Tecnologia | Ref. PTDC/FIS/ 103902/200
Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry
Nuclear astrophysics with radioactive ions at FAIR
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes
Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range
The quasi-free scattering reactions 11C(p,2p) and 10,11,12C(p,pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p,2p) and 12C(p,pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p,2p) are found to be 'significantly smaller than for (p,pn) reactions for all investigated nuclei. © 2019 The Author
The C + O fusion reaction in carbon burning: Study at energies of astrophysical interest using the Trojan Horse Method
International audienceThe carbon-burning process in massive stars mainly occurs via the 12C +12 C. However, at temperatures higher than 109K and considering the increased abundance of 16O produced during the later stages of the heliumburning,the 12C+16O fusion can also become relevant. Moreover, 12C+16O also plays a role in the scenario of explosive carbon burning. Thus, the astrophysical energy region of interest ranges from 3 to 7.2 MeV in the center-of-mass frame. However, the various measurements of the cross-section available in the literature stop around 4 MeV, making extrapolation necessary. To solve this uncertainty and corroborate direct measurement we applied the Trojan Horse Method to three-body processes 16O(14N, α24Mg)2H and 16O(14N, p27Al)2H to study the 12C(16O, α)24Mg and 12C(16O, p)27Al reactions in their entire energy region of astrophysical interest. In this contribution, after briefly describing the method used, the experiment and the preliminary phases of the data analysis will be presented and discussed
Study of the
12C +12 C is the main reaction during core and shell carbon burning in massive stars, however, at temperatures higher than 109K when most of the carbon is depleted and its abundance is lower than 16O, the 12C +16 O fusion can also become relevant. Moreover, 12C +16 O reaction can ignite also in the scenario of explosive carbon burning. The astrophysical energy region of interest thus ranges from 3 to 7.2 MeV in the center-of-mass frame. There are various measurements of the cross-section available in the literature, however, they all stop around 4 MeV, making extrapolation necessary at lower energies. To try to solve this uncertainty and corroborate direct measurement the Trojan Horse Method was applied to three-body processes 16O(14N, α24Mg)2H and 16O(14N, p27Al)2H to study the 16O(12C, α)24Mg and 16O(12C, p)27Al reactions
Study of 60Fe(n,)61Fe reaction of astrophysical interest via d(60Fe,p) indirect reaction
Expérience GANIL/LISE/CATS/MUST2/EXOGAMInternational audienceINTEGRAL and RHESSI spacecrafts recently detected the 1.173 and 1.333 MeV gamma-ray lines coming from the 60Fe--60Co--60Ni radioactive decay chain. The long lived isotope 60Fe (T1/2 = 1.5 106y) is believed to be primarily produced in core-collapse supernovae. However the interpretation of the observations is difficult because of the large uncertainties concerning 59Fe(n,gamma)60Fe and 60Fe(n,gamma)61Fe cross sections, involved in 60Fe nucleosynthesis.The direct component of the 60Fe(n,gamma)61Fe reaction was studied indirectly via the d(60Fe,pgamma)61Fe transfer reaction. The experiment performed in GANIL in spring 2009 will allow to determine the excitation energies of the populated excited states of 61Fe and for the first time their spectroscopic factors as well as their transfer angular momentum.I will first give an overview of the astrophysical context, then I will describe the experimental setup and finally present some preliminary results of the ongoing analysis