21 research outputs found

    Studies on Nucleic Acid Reassociation Kinetics: Retarded Rate of Hybridization of RNA with Excess DNA

    Get PDF
    The rate of reaction of excess double-stranded bacteriophage phi X174 and plasmid RSF2124 DNA drivers with enzymatically synthesized asymmetric RNA tracers was measured. Other reactions were carried out with excess Escherichia coli DNA and E. coli RNA labeled in vivo. RNA and DNA fragment lengths were held approximately equal. For each case it was shown that in DNA excess the rate constant for RNA· DNA hybridization is 3- to 4.5-fold lower than that of the renaturation rate constant for the driver DNA. This retardation was also observed in pseudo-first-order hybridization reactions driven by excess strand-separated RSF2124 DNA. It was concluded that the rate constant for RNA· DNA hybridization depends partially on which species is in excess

    Developmental Biochemistry of Cottonseed Embryogenesis and Germination

    No full text

    Sequences of the Cotton Group 2 LEA/RAB/Dehydrin Proteins Encoded by Lea3

    No full text

    A Measurement of the Sequence Complexity of Polysomal Messenger RNA in Sea Urchin Embryos

    No full text
    The first measurement has been made of the number of diverse mRNA sequences (mRNA sequence complexity) in the total polysomes of a eucaryotic system, the sea urchin gastrula. mRNA was purified of nuclear RNA and any other heterogeneous RNA contaminants by release from polysomes with puromycin. Trace quantities of labeled nonrepetitive DNA fragments were hybridized with an excess of mRNA. The hybridization reaction followed ideal first order kinetics in mRNA concentration. At completion of the hybridization reaction, 1.35% of the nonrepetitive DNA was present as mRNA-DNA hybrid. The hybridized DNA was extracted and was at least 70% hybridizable with mRNA, demonstrating a 50-fold purification of the expressed sequences. This purified DNA fraction reassociated with excess unfractionated sea urchin DNA at a rate identical to that of the total nonrepetitive DNA tracer. The mRNA had therefore been hybridized to nonrepetitive DNA sequence, and the amount of hybrid could be used as a direct measure of the mRNA sequence complexity. The complexity of the gastrula mRNA can be calculated as about 17 million nucleotides, sufficient to comprise some 14,000 distinct structural genes. This result also provides an estimate of the number of diverse proteins being translated in the gastrula. From the rate of mRNA-DNA hybrid formation, we estimate that about 8% of the mRNA belongs to this complex class, and that less than 500 copies of each species of message in this class exist per embryo. Most of the mRNA population consists of a relatively small number of diverse species represented a much larger number of times

    A Measurement of the Sequence Complexity of Polysomal Messenger RNA in Sea Urchin Embryos

    No full text
    The first measurement has been made of the number of diverse mRNA sequences (mRNA sequence complexity) in the total polysomes of a eucaryotic system, the sea urchin gastrula. mRNA was purified of nuclear RNA and any other heterogeneous RNA contaminants by release from polysomes with puromycin. Trace quantities of labeled nonrepetitive DNA fragments were hybridized with an excess of mRNA. The hybridization reaction followed ideal first order kinetics in mRNA concentration. At completion of the hybridization reaction, 1.35% of the nonrepetitive DNA was present as mRNA-DNA hybrid. The hybridized DNA was extracted and was at least 70% hybridizable with mRNA, demonstrating a 50-fold purification of the expressed sequences. This purified DNA fraction reassociated with excess unfractionated sea urchin DNA at a rate identical to that of the total nonrepetitive DNA tracer. The mRNA had therefore been hybridized to nonrepetitive DNA sequence, and the amount of hybrid could be used as a direct measure of the mRNA sequence complexity. The complexity of the gastrula mRNA can be calculated as about 17 million nucleotides, sufficient to comprise some 14,000 distinct structural genes. This result also provides an estimate of the number of diverse proteins being translated in the gastrula. From the rate of mRNA-DNA hybrid formation, we estimate that about 8% of the mRNA belongs to this complex class, and that less than 500 copies of each species of message in this class exist per embryo. Most of the mRNA population consists of a relatively small number of diverse species represented a much larger number of times

    Cotton Lea4

    No full text
    corecore