2 research outputs found

    Insights into the Role of a Cardiomyopathy-Causing Genetic Variant in ACTN2

    Get PDF
    Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hyper-trophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocar-diography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Reso-lution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell cycle defects and mitochondrial dys-function. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteosomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteosomal system is activated; a mechanism which has been implicated in cardiomyopathies previously. In parallel, lack of functional al-pha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell cycle defects, the likely cause of death of the embryos. The defects also have wide-ranging morphological consequences

    Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status

    No full text
    Abstract Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of β1/2/3-adrenoceptors (β-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1–3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated β1-ARs. The β2-ARs/protein kinase B/Akt were attenuated while β3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by β1/2-AR desensitization, activation of the β3-AR/PKG/AMPK pathways, and an immunomodulatory effect
    corecore