38 research outputs found
Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations
Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel helmet design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury
Radiations and male fertility
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental,
health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme
exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types
of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is
impossible to cover all types of radiation sources and their biological effects under a single title, this review is
focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most
common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect
of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that
radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count,
morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces
genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations
and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased
level of reactive oxygen species, which may lead to infertility. This has been concluded based on available
evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality