3,816 research outputs found
Fluorescent carbon dots from mono- and polysaccharides:synthesis, properties and applications
Fluorescent carbon dots (FCDs) are an emerging class of nanomaterials made from carbon sources that have been hailed as potential non-toxic replacements to traditional semiconductor quantum dots (QDs). Particularly in the areas of live imaging and drug delivery, due to their water solubility, low toxicity and photo- and chemical stability. Carbohydrates are readily available chiral biomolecules in nature which offer an attractive and cheap starting material from which to synthesise FCDs with distinct features and interesting applications. This mini-review article will cover the progress in the development of FCDs prepared from carbohydrate sources with an emphasis on their synthesis, functionalization and technical applications, including discussions on current challenges
All-optical attoclock: accessing exahertz dynamics of optical tunnelling through terahertz emission
The debate regarding attosecond dynamics of optical tunneling has so far been
focused on time delays associated with electron motion through the potential
barrier created by intense ionizing laser fields and the atomic core.
Compelling theoretical and experimental arguments have been put forward to
advocate the polar opposite views, confirming or refuting the presence of
tunnelling time delays. Yet, such delay, whether present or ot, is but a single
quantity characterizing the tunnelling wavepacket; the underlying dynamics are
richer. Here we propose to complement photo-electron detection with detecting
light, focusing on the so-called Brunel adiation -- the near-instantaneous
nonlinear optical response triggered by the tunnelling event. Using the
combination of single-color and two-color driving fields, we determine not only
the ionization delays, but also the re-shaping of the tunnelling wavepacket as
it emerges from the classically forbidden region. Our work introduces a new
type of attoclock for optical tunnelling, one that is based on measuring light
rather than photo-electrons. All-optical detection paves the way to
time-resolving multiphoton transitions across bandgaps in solids, on the
attosecond time-scale
- …