72 research outputs found

    The Information Bottleneck EM Algorithm

    Full text link
    Learning with hidden variables is a central challenge in probabilistic graphical models that has important implications for many real-life problems. The classical approach is using the Expectation Maximization (EM) algorithm. This algorithm, however, can get trapped in local maxima. In this paper we explore a new approach that is based on the Information Bottleneck principle. In this approach, we view the learning problem as a tradeoff between two information theoretic objectives. The first is to make the hidden variables uninformative about the identity of specific instances. The second is to make the hidden variables informative about the observed attributes. By exploring different tradeoffs between these two objectives, we can gradually converge on a high-scoring solution. As we show, the resulting, Information Bottleneck Expectation Maximization (IB-EM) algorithm, manages to find solutions that are superior to standard EM methods.Comment: Appears in Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI2003

    Learning the Dimensionality of Hidden Variables

    Full text link
    A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the number of states of the hidden variable. In this paper, we address the latter problem in the context of Bayesian networks. We describe an approach that utilizes a score-based agglomerative state-clustering. As we show, this approach allows us to efficiently evaluate models with a range of cardinalities for the hidden variable. We show how to extend this procedure to deal with multiple interacting hidden variables. We demonstrate the effectiveness of this approach by evaluating it on synthetic and real-life data. We show that our approach learns models with hidden variables that generalize better and have better structure than previous approaches.Comment: Appears in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI2001

    "Ideal Parent" Structure Learning for Continuous Variable Networks

    Full text link
    In recent years, there is a growing interest in learning Bayesian networks with continuous variables. Learning the structure of such networks is a computationally expensive procedure, which limits most applications to parameter learning. This problem is even more acute when learning networks with hidden variables. We present a general method for significantly speeding the structure search algorithm for continuous variable networks with common parametric distributions. Importantly, our method facilitates the addition of new hidden variables into the network structure efficiently. We demonstrate the method on several data sets, both for learning structure on fully observable data, and for introducing new hidden variables during structure search.Comment: Appears in Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI2004

    Convex Point Estimation using Undirected Bayesian Transfer Hierarchies

    Full text link
    When related learning tasks are naturally arranged in a hierarchy, an appealing approach for coping with scarcity of instances is that of transfer learning using a hierarchical Bayes framework. As fully Bayesian computations can be difficult and computationally demanding, it is often desirable to use posterior point estimates that facilitate (relatively) efficient prediction. However, the hierarchical Bayes framework does not always lend itself naturally to this maximum aposteriori goal. In this work we propose an undirected reformulation of hierarchical Bayes that relies on priors in the form of similarity measures. We introduce the notion of "degree of transfer" weights on components of these similarity measures, and show how they can be automatically learned within a joint probabilistic framework. Importantly, our reformulation results in a convex objective for many learning problems, thus facilitating optimal posterior point estimation using standard optimization techniques. In addition, we no longer require proper priors, allowing for flexible and straightforward specification of joint distributions over transfer hierarchies. We show that our framework is effective for learning models that are part of transfer hierarchies for two real-life tasks: object shape modeling using Gaussian density estimation and document classification.Comment: Appears in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI2008

    Learning Rules-First Classifiers

    Full text link
    Complex classifiers may exhibit "embarassing" failures in cases where humans can easily provide a justified classification. Avoiding such failures is obviously of key importance. In this work, we focus on one such setting, where a label is perfectly predictable if the input contains certain features, or rules, and otherwise it is predictable by a linear classifier. We define a hypothesis class that captures this notion and determine its sample complexity. We also give evidence that efficient algorithms cannot achieve this sample complexity. We then derive a simple and efficient algorithm and show that its sample complexity is close to optimal, among efficient algorithms. Experiments on synthetic and sentiment analysis data demonstrate the efficacy of the method, both in terms of accuracy and interpretability

    Convex Nonparanormal Regression

    Full text link
    Quantifying uncertainty in predictions or, more generally, estimating the posterior conditional distribution, is a core challenge in machine learning and statistics. We introduce Convex Nonparanormal Regression (CNR), a conditional nonparanormal approach for coping with this task. CNR involves a convex optimization of a posterior defined via a rich dictionary of pre-defined non linear transformations on Gaussians. It can fit an arbitrary conditional distribution, including multimodal and non-symmetric posteriors. For the special but powerful case of a piecewise linear dictionary, we provide a closed form of the posterior mean which can be used for point-wise predictions. Finally, we demonstrate the advantages of CNR over classical competitors using synthetic and real world data

    MadNet: Using a MAD Optimization for Defending Against Adversarial Attacks

    Full text link
    This paper is concerned with the defense of deep models against adversarial attacks. Inspired by the certificate defense approach, we propose a maximal adversarial distortion (MAD) optimization method for robustifying deep networks. MAD captures the idea of increasing separability of class clusters in the embedding space while decreasing the network sensitivity to small distortions. Given a deep neural network (DNN) for a classification problem, an application of MAD optimization results in MadNet, a version of the original network, now equipped with an adversarial defense mechanism. MAD optimization is intuitive, effective and scalable, and the resulting MadNet can improve the original accuracy. We present an extensive empirical study demonstrating that MadNet improves adversarial robustness performance compared to state-of-the-art methods

    Learning Max-Margin Tree Predictors

    Full text link
    Structured prediction is a powerful framework for coping with joint prediction of interacting outputs. A central difficulty in using this framework is that often the correct label dependence structure is unknown. At the same time, we would like to avoid an overly complex structure that will lead to intractable prediction. In this work we address the challenge of learning tree structured predictive models that achieve high accuracy while at the same time facilitate efficient (linear time) inference. We start by proving that this task is in general NP-hard, and then suggest an approximate alternative. Briefly, our CRANK approach relies on a novel Circuit-RANK regularizer that penalizes non-tree structures and that can be optimized using a CCCP procedure. We demonstrate the effectiveness of our approach on several domains and show that, despite the relative simplicity of the structure, prediction accuracy is competitive with a fully connected model that is computationally costly at prediction time.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    DNF-Net: A Neural Architecture for Tabular Data

    Full text link
    A challenging open question in deep learning is how to handle tabular data. Unlike domains such as image and natural language processing, where deep architectures prevail, there is still no widely accepted neural architecture that dominates tabular data. As a step toward bridging this gap, we present DNF-Net a novel generic architecture whose inductive bias elicits models whose structure corresponds to logical Boolean formulas in disjunctive normal form (DNF) over affine soft-threshold decision terms. In addition, DNF-Net promotes localized decisions that are taken over small subsets of the features. We present an extensive empirical study showing that DNF-Nets significantly and consistently outperform FCNs over tabular data. With relatively few hyperparameters, DNF-Nets open the door to practical end-to-end handling of tabular data using neural networks. We present ablation studies, which justify the design choices of DNF-Net including the three inductive bias elements, namely, Boolean formulation, locality, and feature selection

    Towards Global Remote Discharge Estimation: Using the Few to Estimate The Many

    Full text link
    Learning hydrologic models for accurate riverine flood prediction at scale is a challenge of great importance. One of the key difficulties is the need to rely on in-situ river discharge measurements, which can be quite scarce and unreliable, particularly in regions where floods cause the most damage every year. Accordingly, in this work we tackle the problem of river discharge estimation at different river locations. A core characteristic of the data at hand (e.g. satellite measurements) is that we have few measurements for many locations, all sharing the same physics that underlie the water discharge. We capture this scenario in a simple but powerful common mechanism regression (CMR) model with a local component as well as a shared one which captures the global discharge mechanism. The resulting learning objective is non-convex, but we show that we can find its global optimum by leveraging the power of joining local measurements across sites. In particular, using a spectral initialization with provable near-optimal accuracy, we can find the optimum using standard descent methods. We demonstrate the efficacy of our approach for the problem of discharge estimation using simulations.Comment: The 4-page paper sent to NeurIPS 2018 AI for social good worksho
    • …
    corecore