52 research outputs found
Vortex structure in exponentially shaped Josephson junctions
We report the numerical calculations of the static vortex structure and
critical curves in exponentially shaped long Josephson junctions for in-line
and overlap geometries. Each solution of the corresponding boundary value
problem is associated with the Sturm-Liouville problem whose minimal eigenvalue
allows to make a conclusion about the stability of the vortex. The change in
width of the junction leads to the renormalization of the magnetic flux in
comparison to the case of a linear one-dimensional model. We study the
influence of the model's parameters and, particularly, the shape parameter on
the stability of the states of the magnetic flux. We compare the vortex
structure and critical curves for the in-line and overlap geometries. Our
numerically constructed critical curve of the Josephson junction matches well
with the experimental one.Comment: 8 pages, 10 figures, NATO Advanced Research Workshop on "Vortex
dynamics in superconductors and other complex systems" Yalta, Crimea,
Ukraine, 13-17 September 200
Radiation induced oscillations of the Hall resistivity in two-dimensional electron systems
We consider the effect of microwave radiation on the Hall resistivity in
two-dimension electron systems. It is shown that the photon-assisted impurity
scattering of electrons can result in oscillatory dependences of both
dissipative and Hall components of the conductivity and resistivity tensors on
the ratio of radiation frequency to cyclotron frequency. The Hall resistivity
can include a component induced by microwave radiation which is an even
function of the magnetic field. The phase of the dissipative resistivity
oscillations and the polarization dependence of their amplitude are compared
with those of the Hall resistivity oscillations. The developed model can
clarify the results of recent experimental observations of the radiation
induced Hall effect.Comment: 4 pages, 1 figur
- …