81 research outputs found

    Hard pion bremsstrahlung in the Coulomb region

    Full text link
    Hard high-energy pion-nucleus bremsstrahlung, π+Aπ+γ+A\pi^- +A\to\pi^- +\gamma +A, is studied in the Coulomb region, i.e. the small-angle region where the nuclear scattering is dominated by the Coulomb interaction. Special attention is focussed on the possibility of measuring the pion polarizability in such reactions. We study the sensitivity to the structure of the underlying the pion-Compton amplitude through a model with σ\sigma, ρ\rho, and a_1 exchanges. It is found that the effective energy in the virtual pion-Compton scattering is often so large that the threshold approximation does not apply.Comment: 18 pages, 5 figure

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file

    Pion polarizabilities and bremsstrahlung

    No full text
    corecore