1,094 research outputs found
A Kohn-Sham system at zero temperature
An one-dimensional Kohn-Sham system for spin particles is considered which
effectively describes semiconductor {nano}structures and which is investigated
at zero temperature. We prove the existence of solutions and derive a priori
estimates. For this purpose we find estimates for eigenvalues of the
Schr\"odinger operator with effective Kohn-Sham potential and obtain
-bounds of the associated particle density operator. Afterwards,
compactness and continuity results allow to apply Schauder's fixed point
theorem. In case of vanishing exchange-correlation potential uniqueness is
shown by monotonicity arguments. Finally, we investigate the behavior of the
system if the temperature approaches zero.Comment: 27 page
Locomotor adaptability in persons with unilateral transtibial amputation
Background
Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective
Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods
The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results
Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions
Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb
Indications of Neutrino Oscillation in a 250 km Long-baseline Experiment
The K2K experiment observes indications of neutrino oscillation: a reduction
of flux together with a distortion of the energy spectrum. Fifty-six
beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the
neutrino production point, with an expectation of .
Twenty-nine one ring -like events are used to reconstruct the neutrino
energy spectrum, which is better matched to the expected spectrum with neutrino
oscillation than without. The probability that the observed flux at SK is
explained by statistical fluctuation without neutrino oscillation is less than
1%.Comment: 5 pages, 3 figures embedded, LaTeX with RevTeX style, accepted for
publication in PRL on December 13, 200
Measurement of a small atmospheric ratio
From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900
muon-like and 983 electron-like single-ring atmospheric neutrino interactions
were detected with momentum MeV/, MeV/, and
with visible energy less than 1.33 GeV. Using a detailed Monte Carlo
simulation, the ratio was measured to be , consistent with previous results from the
Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from
theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure
Dynamics of Flux Creep in Underdoped Single Crystals of Y_1-xPr_xBa_2Cu_3O_7-d
Transport as well as magnetic relaxation properties of the mixed state were
studied on strongly underdoped Y_1-xPr_xBa_2Cu_3O_7-d crystals. We observed two
correlated phenomena - a coupling transition and a transition to quantum creep.
The distribution of transport current below the coupling transition is highly
nonuniform, which facilitates quantum creep. We speculate that in the mixed
state below the coupling transition, where dissipation is nonohmic, the current
distribution may be unstable with respect to self-channeling resulting in the
formation of very thin current-carrying layers.Comment: 11 pages, 9 figures, Submitted to Phys. Rev.
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Observation of the east-west anisotropy of the atmospheric neutrino flux
The east-west anisotropy, caused by the deflection of primary cosmic rays in
the Earth's magnetic field, is observed for the first time in the flux of
atmospheric neutrinos. Using a 45 kt-year exposure of the
Super-Kamiokande detector, 552 e-like and 633 mu-like horizontally-going
events are selected in the momentum range between 400 and 3000 MeV/c.
The azimuthal distribution of e-like and mu-like events agrees with the
expectation from atmospheric neutrino flux calculations that account for the
geomagnetic field, verifying that the geomagnetic field effects in the
production of atmospheric neutrinos in the GeV energy range are well
understood.Comment: 8 pages,3 figures revtex, submitted to PR
Evidence for oscillation of atmospheric neutrinos
We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year
(535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith
angle dependent deficit of muon neutrinos which is inconsistent with
expectations based on calculations of the atmospheric neutrino flux.
Experimental biases and uncertainties in the prediction of neutrino fluxes and
cross sections are unable to explain our observation. The data are consistent,
however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82
and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.Comment: 9 pages (two-column) with 4 figures. Small corrections to Eqn.4 and
Fig.3. Final version to appear in PR
- âŠ