182 research outputs found
MATHEMATICAL MODELLING OF CALCIUM DEPENDENT ACTIVE CONTRACTION IN A GASTROINTESTINAL SMOOTH MUSCLE CELL
Ph.DDOCTOR OF PHILOSOPH
Expression and purification of Murine IFN-γ protein from cloned E. coli strain containing pRSET A Vector with IFN gamma gene
The cloned E. coli cell containing Murine IFN -γ inserted pRSET A vector system was effectively expressed in this study. The induction of the clones was done using IPTG in E.coli and induces mRNA generation and synthesis protein. It has shown an expression of protein with 18 kda in SDS PAGE and western blotting and their size was determined by GENE RUNNER software. This recombinant protein has a 6x His tag and it has been proved as it has shown a potent anti His property in western blotting. The purification of the protein was further done by Ni-NTA affinity chromatography. Nitrilo tri acetic acid (NTA) binds more stably with nickel (Ni) with 4 to 6 ligand binding sites in the coordination sphere of Nickel leaving two sites free to interact with the 6X His tag. The total results conclude that the targeted IFN gamma (408bp mouse gene) cloned in pRSET A was effectively expressed in E. coli BL21 strain cells and purified IFN gamma protein effectively as 1mg/ml. The purified IFN gamma protein may be used to diagnose the antiviral activity and antitumor activity.
Key words: IFN gamma, pRSET A, E. coli, SDS PAGE, Western Blottin
Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering
Drug delivery via the eye, nose, gastrointestinal tract and lung is of great interest as they represent patient-compliant and facile methods to administer drugs. However, for a drug to reach the systemic circulation it must penetrate the “mucus barrier”. An understanding of the characteristics of the mucus barrier is therefore important in the design of mucus penetrating drug delivery vehicles e.g. nanoparticles. Here, a range of nanoparticles – silica, aluminium coated silica, poly (lactic-co-glycolic acid) (PLGA) and PEGylated PLGA – each with known but different physicochemical characteristics were examined in the presence of mucin to identify those characteristics that engender nanoparticle/mucin interactions and thus, to define “design rules” for mucus penetrating (nano)particles (MPP), at least in terms of the surface characteristics of charge and hydrophilicity. Dynamic light scattering (DLS) and rheology have been used to assess the interaction between such nanoparticles and mucin. It was found that negatively charged and hydrophilic nanoparticles do not exhibit an interaction with mucin whereas positively charged and hydrophobic nanoparticles show a strong interaction. Surface grafted poly (ethylene glycol) (PEG) chains significantly reduced this interaction. This study clearly demonstrates that the established colloid science techniques of DLS and rheology are very powerful screening tools to probe nanoparticle/mucin interactions
Parkin-deficient Mice Exhibit Nigrostriatal Deficits but not Loss of Dopaminergic Neurons
Loss-of-function mutations in parkin are the major cause of early-onset familial Parkinson's disease. To investigate the pathogenic mechanism by which loss of parkin function causes Parkinson's disease, we generated a mouse model bearing a germline disruption in parkin. Parkin-/- mice are viable and exhibit grossly normal brain morphology. Quantitative in vivo microdialysis revealed an increase in extracellular dopamine concentration in the striatum of parkin-/- mice. Intracellular recordings of medium-sized striatal spiny neurons showed that greater currents are required to induce synaptic responses, suggesting a reduction in synaptic excitability in the absence of parkin. Furthermore, parkin-/- mice exhibit deficits in behavioral paradigms sensitive to dysfunction of the nigrostriatal pathway. The number of dopaminergic neurons in the substantia nigra of parkin-/- mice, however, is normal up to the age of 24 months, in contrast to the substantial loss of nigral neurons characteristic of Parkinson's disease. Steady-state levels of CDCrel-1, synphilin-1, and α-synuclein, which were identified previously as substrates of the E3 ubiquitin ligase activity of parkin, are unaltered in parkin-/- brains. Together these findings provide the first evidence for a novel role of parkin in dopamine regulation and nigrostriatal function, and a non-essential role of parkin in the survival of nigral neurons in mice
(Photo-)crosslinkable gelatin derivatives for biofabrication applications
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for bio-fabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
A quantitative description of active force generation in gastrointestinal smooth muscle
10.1002/cnm.1419International Journal for Numerical Methods in Biomedical Engineering273450-46
- …